$1302 B$

DC Power Supply

Instruction Manual

GLOBAL SPECIALTIES

GLOBAL SPECIALTIES
1486 Highland Ave. Unit 2
Cheshire, CT 06410
Tel: (203) 272-3285
Fax: (203) 272-4330

TABLE OF CONTENTS

GENERAL INFORMATION Page 2
SPECIFICATIONS Page 3
LOCATION AND DESCRIPTION OF OPERATING CONTROLS Page 4
INSTALLATION Page 5
OPERATING INSTRUCTIONS Page 6
POWER SUPPLY OPERATION Page 9
OPERATING PRECAUTIONS Page 15
CASE DISASSEMBLY AND ASSEMBLY Page 16
MAINTENANCE AND RECALIBRATION Page 16
SERVICE AND WARRANTY INFORMATION Page 17
PART LIST Page 18
SCHEMATIC AND BOARD LAYOUT Page 25
LIST OF ILLUSTRATIONS
FIGURE 1. Location of operating controls Page 4
FIGURE 2. Series connection: 0 to 64 V supply @2.0A Page 10
FIGURE 2A. Series connection: 5 to 69 V supply @ 2.0A Page 11
FIGURE 2B. Series connection: for a split power supply, $\pm 32 \mathrm{~V} @ 2.0 \mathrm{~A}$ Page 12
FIGURE 3.Example of an improper connection: series subtraction Page 13
FIGURE 4.Parallel connection of variable supplies with equalizing resistors Page 14
LIST OF TABLES
TABLE 1. DC power supply interconnections Page 9

GENERAL INFORMATION

DESCRIPTION

The 1302B Power Supply is a high performance triple output DC power supply for industrial and laboratory use. Performance and economy have successfully been combined to provide a compact, fully solid state instrument.

The two main outputs are continuously variable from 0 to 32 V and can supply 2A max each. They can be operated in constant voltage or constant current modes. Automatic overload protection is achieved by fast transition from CV to CC mode and may be set at any point in the voltage or current range. Separate front panel meters are provided to monitor output voltage and load current for the 32 V sections. Switch selection is provided to enable either voltage or current monitoring for each section.

In addition, a separate 5 V output is provided with variation from 4.5VDC to 5.5 VDC maximum \& maximum current of 5 A with feedback current limit.

The output voltage and current limit settings of the $0-32 \mathrm{~V}$ outputs can be varied manually using front panel controls.

All the outputs are floating i.e. neither the output positive terminal nor the negative terminal (nor any point within the regulator circuitry) is connected to ground.

The power supply is designed to operate in ambient temperature of up to $40^{\circ} \mathrm{C}$ and full output may be drawn continuously provided free air circulation is allowed. The unit works from mains supply of 115 VAC , $47-63 \mathrm{~Hz}$.

SPECIFICATIONS

Detailed specifications of the power supply are given in the following table.

Dual 0 to 32 V Section

Output Voltage I \& II:	0-32V DC continuously variable by voltage control.
Load Current I \& II:	$0-2$ Amp max., continuously variable by current control.

Constant Voltage Mode Operation:

Line Regulation:
Load Regulation:
Ripple \& Noise:

Constant Current Mode Operation:

Line Regulation:
Load Regulation: $\quad \pm 0.1 \%+250 \mu \mathrm{~A}$ for change in output voltage from zero to maximum.
Ripple \& Noise: $\quad 0.8 \mathrm{~mA} \mathrm{rms} \max$.

Metering:

Two separate 3 digit DPMs are provided for 0/P I and 0/P II.

Meter Selection:
Meter Accuracy:
Overload Protection:

5V Section

Output Voltage:
Output Current:
Ripple \& Noise:

General

Operating Temperature: 0 to $40^{\circ} \mathrm{C}$.
Input Voltage:
Dimensions:
Weight:

Switch selection for voltage or current monitoring. $\pm 0.5 \%$ of rdg. +2 counts.
Automatic overload and short circuit protection.
4.5 VDC to 5.5 VDC .

5 A max. with feedback current limit.
2 mV rms max.
$230 \mathrm{~mm}(\mathrm{~W}) \times 285 \mathrm{~mm}(\mathrm{D}) \times 133 \mathrm{~mm}(\mathrm{H})$
13.0 Kg . net approx.

LOCATION AND DESCRIPTION OF OPERATING CONTROLS

In order to use the full capabilities of the 1302-B, it is highly recommended that the user become familiar with the controls associated with this instrument.

Figure 1. Location of operating controls.

1- Power switch
2- A-Supply LED Display: Displays voltage or current 0 to 32 V .
3- A-Current Control: Clockwise rotation increases adjustable current limit.
4- B-Current Control: Clockwise rotation increases adjustable current limit.
5- B-Supply LED Display: Displays voltage or current 0 to 32 V .
6- B-Supply V/A selection:
V-displays output voltage;
A-displays output current.
7- B-Variable voltage control: Clockwise rotation increases variable voltage from 0 to 32V
8- B-Output Terminals: Red terminal is (+); Black terminal is $(-)$

9- Ground terminal: Connected to chassis and earth through third wire of AC Line cord.
10-5 Volt Output Terminals: Red terminal is $(+)$; Black terminal is $(-)$
11-5 Volt control: Screwdriver adjustment for variation from $4.5 \mathrm{~V}-5.5 \mathrm{~V}$.
12-A-Output terminals: Red terminal is (+) Black terminal is (-)
13- A-Variable voltage control: Clockwise rotation increases variable voltage from 0-32 v.
14- A-Supply V/A Selection: V-displays output voltage; A-displays output current.

INSTALLATION

INITIAL INSPECTION

As soon as the power supply unit is unpacked inspect for any damage that may have occurred during transit. Save all packing material until inspection is completed. If any damage is found, notify the carriers immediately. Our authorized representatives should also be notified.

PHYSICAL CHECK

This check should confirm that there are no broken knobs or connectors, that the cabinet and panel surfaces are free of dents and scratches and the meters are not scratched and cracked.

ELECTRICAL CHECK

The power supply unit should be checked against electrical specifications. An in-cabinet performance check will verify proper operation.

INSTALLATION DATA

The power supply unit is shipped ready for bench operation. It is necessary only to connect the unit to a rated source of power and it is ready for operation.

LOCATION

The power supply unit is naturally cooled. Sufficient space should be kept around the unit while in operation, so that heat sinks do not remain in confined space or close to another heating source. The ambient temperature of the area around the unit should be less than $40^{\circ} \mathrm{C}$.

INPUT POWER REQUIREMENTS

The power supply unit may be operated continuously from input voltage of 115 volts 47 to 63 Hz power source.

REPACKAGING FOR SHIPMENT

To ensure safe shipment of the power supply unit, it is recommended that the package designed for. the unit be used. The original packaging material is reusable. Be sure to attach a tag to the unit specifying the owner, and the fault observed with a brief description. (See Page 17 for service information).

REMOVING COVER

The top cover is retained in place by 6 self tapping screws \& two handle mounting screws. To remove cover, proceed as follows:
a) Remove the chrome-plated handle caps.
b) Remove the handle mounting screws.
c) Remove the self tapping screws on sides.
d) Lift the cover from rear side, slide backwards \& pull.

OPERATING INSTRUCTIONS

The 1302B power supply consists of three sections. The two main outputs are continuously variable from 0 to 32 V and can supply 2 A max. each. In addition, a separate 5 V output is provided with variation from 4.5 VDC to 5.5 VDC maximum \& maximum current of 5 A with feedback current limit.

TURN ON SETTING PROCEDURE:

The following procedure describes the use of controls and indicators.
a) Set 'POWER ON' Switch, ON.
b) Adjust the 'VOLTAGE" controls and "CURRENT' controls.

CONSTANT VOLTAGE MODE:

To select a constant voltage output, proceed as follows:
a) Adjust desired voltage by adjusting the voltage controls.
b) When in CV mode CV LED should glow.
c) If a load change causes the current limit to be exceeded, the power supply will automatically cross over to constant current output at preset current limit and output voltage will drop proportionately. In setting the current limit, allowance must be made for high peak currents which can cause unwanted crossover.

CONSTANT CURRENT MODE

To select a constant current output, proceed as follows:
a) Adjust desired current by adjusting the current controls.
b) When in CC mode CC LED should glow.
c) if a load change causes the voltage limit to be exceeded, the power supply will automatically cross over to constant voltage output at the preset voltage limit and output current will drop proportionately. In setting voltage limit, allowance must be made for high peak voltages which can cause unwanted crossover.

LOAD CONNECTIONS:

The load should be connected to the power supply output terminals using separate pairs of connecting wires. This will minimize mutual coupling effects between loads and will retain full advantage of the low output impedance of the power supply. Each pair of connecting wires should be as short as possible and twisted or shielded to reduce noise pick up. (If a shielded pair is used, connect one end of the shield to ground at power supply and leave the other end unconnected).

Positive or negative voltage can be obtained from this supply by grounding either one of the output terminals or one end of the load. Always use two leads to connect load to the supply, regardless of where the set up is grounded. This will eliminate any possibility of the output current return paths through the power source ground which would damage the line cord plug. This supply can also be operated up to $\pm 300 \mathrm{VDC}$ above ground, if neither output terminal is grounded.

POWER SUPPLY OPERATION

INITIAL SET UP

Refer to the preceding section for initial set up of the power supply.

OPERATING INSTRUCTIONS

Proper operation of most circuitry depends on correct supply voltages. It is recommended that both A and B supplies be set to the required voltage levels with their loads disconnected. When the desired voltage is set (using the A or B variable voltage control),turn the AC power OFF, connect each load to the proper supply, then turn the AC power ON. Output current of either supply may be read by simply changing the V / A switch from V to A position.

COMBINING POWER SUPPLIES

Each of the three power supplies may be used independently. Any two or all three may be used simultaneously, if desired. Power supplies may be combined to get voltage or current as described below and in the accompanying interconnection table. (See Table 1)

Power Supply	Connection	Voltage Range	Max. Current
5 V	-	$4.5-5.5 \mathrm{~V}$	5.0 A
A	-	$0-32 \mathrm{~V}$	2.0 A
B	-	$0-32 \mathrm{~V}$	2.0 A
A+B	Series	$0-64 \mathrm{~V}$	2.0 V
A+B	Parallel with	$0-32 \mathrm{~V}$	4.0 A
	Equalizing resistors	$5-37 \mathrm{~V}$	2.0 A
A+5V or B	Series	$5-69 \mathrm{~V}$	2.0 A
$5 \mathrm{~V}+\mathrm{A}$ and B	Series	$0-$ Plus 32 V	2.0 A
$\mathrm{~A}+\mathrm{B}$	Split Supply	$0-$ minus 32 V	

Table 1. DC Power supply interconnections.

SERIES CONNECTION

The output of both A and B Power supplies may be connected in series to provide a variable 0 to 64 V at up to 2.0 A (see figure 2). The total voltage may be read by adding a separate voltage readings for both A and B supplies. Load current may be monitored from the output of either the A or B supply.

Figure 2. Series connection: 0 to $64 \mathrm{~V} @ 2.0 \mathrm{~A}$

NOTE

When both A and B power supplies are connected in series, each supply should be set to one-half the desired combined voltage. This will assure even power distribution between the supplies. For example, to obtain an output of 35 Volts, set both A and B supplies to 17.5 Volts.

The highest voltage may be achieved by connecting all three supplies in series, giving a range of $5-69 \mathrm{~V}$ with a maximum current of 2.0 A . (See figure 2 A). Again the total voltage may be read by adding the individual output voltages, and the current may be read from the output of either the A or B supply.

Figure 2A. Series connection: 5 to 69 V supply @ 2.0A

A split supply may be arranged by connecting the positive terminal (+) of one supply to the negative (-) of any other supply. (See figure 2B). This connection is then used as a circuit ground (Also called circuit common). This arrange arrangement is often used with op-amps which. require $\mathrm{a}+\mathrm{V}$ and -V supply.

Figure 2B. Series connection: for a split supply + and -32V supply @ 2.0 A

CAUTION

The power supplies should not be connected in any manner which causes electron current to flow into a nega-tive(-) terminal or out a(+) positive terminal. An example of this is a series subtraction.
THIS WILL DAMAGE THE SUPPLY (See figure 3).

Figure 3. Example of IMPROPER connection: series subtraction

PARALLEL CONNECTION

The A and B supplies may be connected in parallel to double the available load current giving an output of 0 to 32 V at up to 4.0 A . However, current equalizing resistors must be used. (See figure 4).

For best results, set the A and B supplies to the desired voltage before any connections are made. If the current equalizing resistors are matched, current balance may be obtained. By measuring the differential voltage between the two supplies with external voltmeter and adjusting for zero, the resistors are not well matched. It is preferable that current balance may be achieved by slightly unbalancing the two supplies. A precise voltage reading may be made by measuring across the load with an external voltmeter.

Figure 4. Parallel connection of A and B supplies with equalizing resistors

OPERATING PRECAUTIONS

The power supply is ideally suited for virtually any type of IC bread boarding from TTL, CMOS and ECL to op amps audio and video amps, phase locked loops, and microprocessor circuitry. However, certain normal breadboarding precautions should be taken to avoid ground loops and inadvertent loading. Observance of correct load polarity is also important since most ICs may be damaged by improper power supply connections.

Polarity

Observe proper polarity when connecting the power supplies to the load, especially if the load is polarity sensitive and does not have reverse polarity protection.

GROUND LOOPS

A ground loop is a voltage drop on a ground bus caused by a power stage output entering the ground bus some distance away from the power supply ground binding post.
This small voltage drop, though only milliVolts or microVolts, is a part of the output load. If a preamplifier input of circuit ground is connected to a portion of this ground bus, feedback and oscillation may occur. To prevent this, all output stages should be positioned as close as possible to the ground terminal preamps farther away. Many audio IC's have separate input and output grounds to prevent ground loops.
Even though power supplies are tightly regulated, a short length of a power bus can present enough inductance to cause linear IC oscillation at high frequencies. For this reason, effective bypass capacitors are needed to bypass the power buses. Place these capacitors as close as possible to the power supply pins of the IC. Disc ceramics ($0.1 \mu \mathrm{~F}$) work well and should be placed across as many ICs as possible. Do not use electrolytic or paper capacitors because they have high inductances and cease to act as bypasses above one or two MHz . Bypassing is required with digital IC's also; problems such as inability to reset or to clear and false triggering can occur if IC's are not properly bypassed.

＂NㅋWヨつV7dヨタ ヨSกョ

SLNヨWユSกraV

NOILVU日ITVOヨy CNV ヨDNVNヨ\＆NIVW

＇I！un әчt 10 әр！su！

⿹NINY $\forall M$

SERVICE AND
 WARRANTY INFORMATION

FACTORY SERVICE AND REPAIR

Global Specialties will service and repair this instrument free of charge for a period of three full years subject to the warranty conditions stated below.

To obtain a return merchandise authorization (RMA) required for all returns, phone our customer service department for a RMA and all shipping instructions:

Phone 800-572-1028 or write: GLOBAL SPECIALTIES

WARRANTY

Global Specialties warrants this device to be free from defective material or workmanship for a period of 3 years from the date of original purchase.

Global Specialties under this warranty is limited to repairing the defective device when returned to the factory, shipping charges prepaid, within three full years from the date of original purchase.

Units returned to Global Specialties that have been subject to abuse, misuse, damage or accident or have been connected, installed or adjusted contrary to the instructions furnished by Global Specialties, or that have been repaired by unauthorized persons will not be covered by this warranty.

Global Specialties reserves the right to discontinue models, change specifications, price or design of this device at any time without incurring any obligation whatsoever.

The purchaser agrees to assume all liabilities for any damages and/or bodily injury which may result from the use or misuse of this device by the purchaser, his employees or agents.

This warranty is in lieu of all other representations or warranties expressed implied and no agent or representative of Global Specialties is authorized to assume any other obligation in connection with the sale and purchase of this device.

PART LIST

PCB Components
 2 X ZSDT-CT/01 PCB REV - 01

Ref Designator

Value

RESISTORS

R1

R2
R3
R4*
R5
R6
R7
R8
R9
R10
R11
R12
R13
R14
R15
R16
R17
R18
R19
R20
R21
R22
R23
R24
R25
R28
R27
R28
R29
R30
R31
R32
R33
R34
R35
R36
R37
R38

270E,2W,5\%,MOR
47E,MFR,1/4W,5\%
10K,MFR,1/4W.
1K,MFR, 1/4W,5\% (OPTO)
10E,MFR,1/4W5\%(SCR)
3.9K,MFR,1/4W
3.3K,2W,5\%,MOR.

10K,MFR,1/4W.
8.2KMFR,1/4W.

100K,MFR,1/4W
4.7OHM,MFR, $1 / 4 \mathrm{~W}$.
1.5K,MFR,1/4W.

180K,MFR,1/4W.
390E,MFR,1/4W.
6.8K,MFR,1/4W,5\%

12K,MFR,1/4W,5\%
3.9K,MFR, 1/4W,5\%

10K.MFR,1/4W.
10K,MFR,1/4W.
10K,MFR,1/4W.
3.3K,2W,5\%,MOR

270E,2W,5\%,MOR.
82K,MFR,1/4W,5\%
4.7K,MFR,1/4W,5\%

24E,MFR,1/4W,5\%
820E,MFR,1/4W,5\%
330K,MFR,1/4W,5\%
39K,MFR,1/4W,5\%
180K,MFR,1/4W,5\%
1K,MFR, $1 / 4 \mathrm{~W}, 5 \%$
15E,MFR,1/4W,5\%
6.8K,MFR,1/4W,5\%

15K,MFR,1/4W,5\%
6.8K,MFR,1/4W,5\%

15K,MFR,1/4W,5\%
1K,MFR,1/4W,5\%
2K,MFR, 1/4W,5\%
1K,MFR,1/4W,5\%

1K,MFR, $1 / 4 \mathrm{~W}, 5 \%$
R40
R41
R42
R43*
R44
R45
R46*
R47*
R48
R49
R50
R51
PRESETS
PR 101
PR 102
PR 103

CAPACITORS

C1
C2
C3
C4
C5
C6
C7
C8
C9
C10
C11
C12
C13
C14
C15
C16
C17
C18
C19
C20
C21
4.7K,MFR,1/4W,5\%

330K,MFR, 1/4W,5\%
100E,MFR,1/4W,5\%(I CAL)
4.7K, MFR, $1 / 4 \mathrm{~W}, 5 \%$ (I CAL,SEL)

1K,MFR,1/4W,5\%
1K,MFR, $1 / 4 \mathrm{~W}, 5 \%$
5.1 K,MFR,1/4W,5\% (V CAL,SEL)

100E,MFR,1/4W,5\%(V CAL)
2K,MFR, $1 / 4 \mathrm{~W}, 5 \%$
3.6K,MFR,1/4W,5\%

Shorting Link
10E,MFR, 1/4W,5\%
5K,PRE,LIN(V)(DEV. DROP)
500E,PRE,LIN,(V)(V CAL)
500EPRE,UN,(V) (I CAL)
$0.1 \mu \mathrm{~F} / 100 \mathrm{~V}, \mathrm{MP}$
$0.1 \mu \mathrm{~F} / 250$ VAC MKP
10,000 $\mathrm{HF} / 50 \mathrm{~V}$ ELE, LUG TYPE
$0.1 \mu \mathrm{~F} / 50 \mathrm{~V}, \mathrm{MP}$ 10\%
$33 \mu \mathrm{FR} / 50 \mathrm{~V}, \mathrm{ELE}$
100 μ F/50V,ELE
$100 \mu \mathrm{~F} / 50 \mathrm{~V}$,ELE.
$1 \mu \mathrm{~F} / 50 \mathrm{~V}$, ELE
4.7 $\mu \mathrm{F} / 50 \mathrm{~V}$, ELE

10 $\mathrm{\mu F} / 50 \mathrm{~V}$, ELE.
100uF/50V,ELE.
47 $\mu \mathrm{F} / 50 \mathrm{~V}, \mathrm{ELE}$.
1KPF/50V,CD.
1KPF/50V,CD
$0.1 \mu \mathrm{~F} / 50 \mathrm{~V}, \mathrm{CD}$.
10uF/50V,ELE.
10uF/50V,ELE.
$0.1 \mu F / 50 V, C D$.
220 $\mathrm{HF} / 50 \mathrm{~V}, \mathrm{ELE}$

$220 \mu \mathrm{~F} / 50 \mathrm{~V}, \mathrm{ELE}$

$47 \mu \mathrm{~F} / 50 \mathrm{~V}, \mathrm{ELE}$

PCB Components

Ref Designator
C22
C23
C24
C25
C28
DIODES
CR1
CR2
CR3
CR4
CR5
CR6
CR7
CR8
CR9
CR10
CR11
CR12
CR13
CR14
CR15
CRIB
CR17
CR18
CR19
CR20
CR21
CR22
CR23
CR24
CR25
CR26
CR27
CR28
CR29
ZENERS
Z1
Z2
Z3

2 X ZSDT-CT/01 PCB REV - 01
Value

10uF/50VELE
$0.1 \mu \mathrm{~F} / 50 \mathrm{~V}, \mathrm{CD}$.
$10 \mathrm{uF} / 50 \mathrm{~V}, \mathrm{ELE}$.
$10 \mu \mathrm{~F} / 50 \mathrm{~V}, \mathrm{ELE}$.
$0.1 \mu \mathrm{~F} / 50 \mathrm{~V}, \mathrm{CD}$.
Not Used
1N4007,1KV/1A
1N4007,1KV/1A
1N4007,1KV/1A.
$1 \mathrm{~N} 4007,1 \mathrm{KV} / 1 \mathrm{~A}$
$1 \mathrm{~N} 4007,1 \mathrm{KV} / 1 \mathrm{~A}$
$1 \mathrm{~N} 4007,1 \mathrm{KV} / 1 \mathrm{~A}$
1N4007,1KV/AA.
1N4007,1KV/1A.
1N4007,1KV/1A
1 N4007,1KV/1A
$1 \mathrm{~N} 4007,1 \mathrm{KV} / 1 \mathrm{~A}$.
$1 \mathrm{~N} 4007,1 \mathrm{KV} / 1 \mathrm{~A}$.
1N4007,1KV/1A
1N4007,1KV/AA.
$1 \mathrm{~N} 4007,1 \mathrm{KV} / 1 \mathrm{~A}$.
1N4007,1KV/1A.
$1 \mathrm{~N} 4007,1 \mathrm{KV} / 1 \mathrm{~A}$.
1N4007,1KV/1A.
$1 \mathrm{~N} 4007,1 \mathrm{KV} / 1 \mathrm{~A}$.
$1 \mathrm{~N} 4007,1 \mathrm{KV} / 1 \mathrm{~A}$.
$1 \mathrm{~N} 4007,1 \mathrm{KV} / 1 \mathrm{~A}$.
1N4007,1KV/1A.
1N4007,1KV/1A.
1N4148,100V/10mA
1N4148,100V/10mA
1N4148, 100V/10mA
1N4148,100V/10mA
$1 \mathrm{~N} 4007,1 \mathrm{KV} / 1 \mathrm{~A}$.
1N758,10V/0.4W
1N758,10V/0.4W
$1 \mathrm{~N} 750,4.7 \mathrm{~V} / 0.4 \mathrm{~W}$
PCB Components
Ref Designator
Value
BRIDGE

BR1
BR2

IC's

IC1
IC2
IC3
IC4
IC5
IC6
IC7
IC8
Transistor's/FET/SCR

Q1

Q2
Q3
Q4
Q5
FET1
SCR1

CONNECTORS

CON1
CON2
CON3
CON4

MISCELLANEOUS
TP1
TP2
TP3
TP4
TP5
TP6

6A/600VDC,PC MTG BRIDGE
CSB-1,100V/1APC MTG BRIDGE.

4N25OPTO
7812 (+12V/1A FIXED)
TL431(2.5V SHUNT REG)
LM324
7812(+12/1A FIXED)
TL431(2.5V SHUNT REG)
79 L 05 (-5V/100mA FIXED).
7805 (+5V/1A FIXED).
BC109 (TO-18)
MPSAI2 (TO-92)
BC557 (TO-92)
BC557 (TO-92)
BC547 (TO-92)
IRFP460
SCR $2 N 6396$
$3.96 \mathrm{mmPITCH}, 3$ SIN M
$2.54 \mathrm{mmPITCH}, 12 \mathrm{PIN}$ M
2.54mmPITCH, 12PIN M, L TYPE
$2.54 \mathrm{mmPITCH}, 6$ 6IN M, L TYPE

RIM PIN MALE

RESISTORS

R1
R2
R3
R4*
R5
R6
R7
R8
R9
PRESETS
PR1

CAPACITORS

C1

C2
C3
C4
C5
C6
C7
C8
C9
C10
IC's
IC1
VR1

FND's

DS1
DS2
DS3
LED's

LED1*
MISCELLANEOUS
J1
J2
J3

LED1* 3MM GREEN (VOLTAGE) FOR DUAL/TRIPLE O/P

2 X Z-DPM/01 РCB REV-01

Value

$39 \mathrm{~K}, 0.25,5 \%, \mathrm{MFR}$
470K, $0.25 \mathrm{~W}, 5 \%, \mathrm{MFR}$
1M, $0.25 \mathrm{~W}, 5 \%, \mathrm{MFR}$
SEL(INPUT)
10K, 0.25W,5\%,MFR
2K4,0.25W,5\%,MFR
330E,0.25W,5\%,MFR
330E, $0.25 \mathrm{~W}, 5 \%$, MFR
6K8, 0.25W,5\%,MFR
2.5K, LIN,VER (REF ADJ)

220pF, 50V, CD
$0.1 \mu \mathrm{~F}, 100 \mathrm{~V}, \mathrm{MP}$
$0.01 \mu \mathrm{~F}, 50 \mathrm{~V}, \mathrm{CD}$
$0.47 \mu F, 100 \mathrm{~V}, \mathrm{MP}$
$0.1 \mu \mathrm{~F}, 100 \mathrm{~V}, \mathrm{MP}$
$0.1 \mu \mathrm{~F}, 100 \mathrm{VMP}$
$10 \mu \mathrm{~F}, 50 \mathrm{~V}, \mathrm{EL}$
$0.1 \mu F, 50 \mathrm{~V}, \mathrm{CD}$
$10 \mu \mathrm{~F}, 50 \mathrm{~V}, \mathrm{EL}$
$0.1 \mathrm{uF}, 50 \mathrm{~V}, \mathrm{CD}$
7107 DECODER DRIVER
TLO-431

TSD566 GREEN
TSD566 GREEN
TSD566 GREEN 3MM GREEN (CURRENT) FOR DUALTRIPLE O/P
2.54PITCH, 5 PIN M
2.54PITCH, 3 PIN M
2.54PITCH, 4 PIN M
PCB Components Z-TR/01 PCB REV-01
Ref DesignatorValue
RESISTORS
R1 1K,2W5\%,MOR
R2 0.1E,2.5W,5\%,WW
R129* $33 \mathrm{~K}, 0.25 \mathrm{~W}, 5 \%$, MFR
CAPACITORS
C1
C2
C3
DIODE
CR1
$0.1 \mu \mathrm{~F}, 50 \mathrm{~V}, \mathrm{CD}$
100 $\mu \mathrm{F}, 50 \mathrm{~V}, \mathrm{EL}$
10 $\mu \mathrm{F}, 50 \mathrm{~V}, \mathrm{EL}$
PCB Components ZT-5V5A/01 PCB REV-01
Ref Designator Value
RESISTORS
R1
R2R3R4R5
1K.2W.MOR,5\%
NOT USED
470E,0.25W,MFR,5\%
SHORT
750E,0.25W,MFR,5\%
CAPACITORS
C1 15000uF/35V,EL
C2 $0.1 \mu \mathrm{~F} / 50 \mathrm{~V}, \mathrm{CD}$
IC's
IC1 LM723
BRIDGES
BR1 10A,600VDC,PCB MTG TYPE
CONNECTORS
CON-1 2.54 MM PITCH, 5 PIN MALE
CON-2
PCB Components ZT-5VTR/01 PCB REV-01
Ref Designator Value
RESISTORS
R1 1K, 0.25W,MFR.5\%
CAPACITORS
C1 $100 \mu \mathrm{~F} / 16 \mathrm{~V}, \mathrm{EL}$
C2 $0.1 \mu \mathrm{~F} / 50 \mathrm{~V}, \mathrm{CD}$
DIODES
CR1 1N5402
LED's
LED1 3MM,RED(OVER LOAD)
PORTS
PR1 $1 \mathrm{~K}, \mathrm{CARBON}, .25 \mathrm{~W}$
PCB Components 2X 5V5A-HS PCB REV-01
Ref Designator Value
RESISTORS
R1 0.05E,2.5W;WWR
TRANSISTORS
Q1TIP 122

