

MPQ9361 Industrial Grade, High Performance Regulated Charge Pump

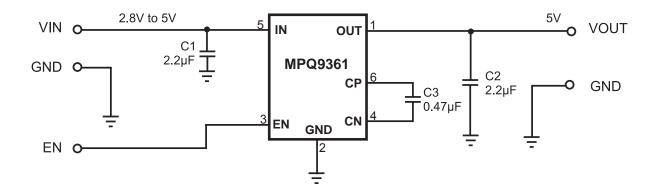
The Future of Analog IC Technology

DESCRIPTION

The MPQ9361 is a high performance, regulated charge pump converter. Its input voltage ranges from 2.8V to Vout. The output voltage is regulated to a fixed 5V. No external inductor is required for simplicity and compactness. Internal soft-start circuit effectively reduces the in-rush current both while start-up and mode change.

The MPQ9361 is available in a compact TSOT23-6 package

FEATURES

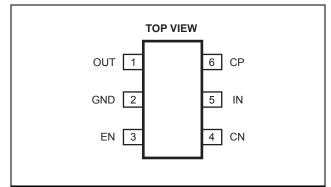

- Guaranteed Industrial Temp Range Limits
- Input Voltage Range: 2.8V to 5V
- Internal Soft-Start
- Output Maximum Current up to 110mA
- Fixed 5V Output Voltage with 30mV Ripple
- 2X Charge Pump
- Fixed 1.35MHz Switching Frequency
- Over Current Protection
- Short Circuit Protection
- In-rush Current limit
- TSOT23-6 package and Lead (pb)-Free

APPLICATIONS

- Cell phone, Smart phone, LED backlight
- PDA or hand Held Computer
- Camera Flash White LED
- LCD Display Supply
- TV-Remote Control

"MPS" and "The Future of Analog IC Technology" are Registered Trademarks of Monolithic Power Systems, Inc.

TYPICAL APPLICATION



ORDERING INFORMATION

Part Number*	Package	Top Marking	Free Air Temperature (T _A)	
MPQ9361DJ	TSOT23-6	U2	-40°C to +85°C	

* For Tape & Reel, add suffix –Z (e.g. MP MPQ9361DJ–Z); For RoHS compliant packaging, add suffix –LF (e.g. MPQ9361DJ–LF–Z)

PACKAGE REFERENCE

ABSOLUTE MAXIMUM RATINGS ⁽¹⁾

Supply Input Voltage	0.3V to +6.0V
All Other Pins	0.3V to +6.0V
Storage Temperature	
Continuous Power Dissipation	$(T_A = +25^{\circ}C)^{(2)}$
	0.64W
Junction Temperature	+150°C
Lead Temperature	+260°C

Recommended Operating Conditions ⁽³⁾

	J
Supply Voltage V _{IN}	2.8V to 5.0V
Output Voltage VOUT	
Operating Junct. Temp (T _J).	

Thermal Resistance $^{(4)}$ θ_{JA}

TSOT23-6..... 195..... 25... °C/W

 θ_{JC}

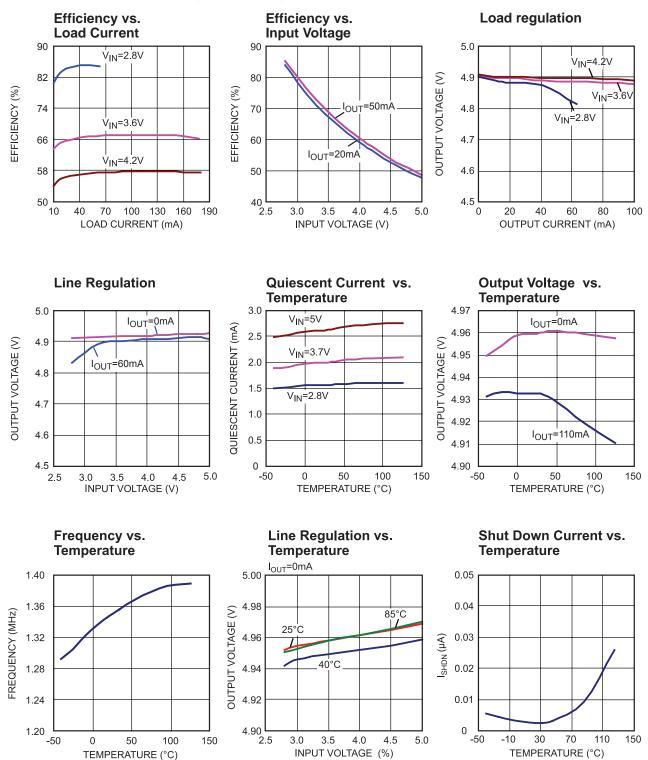
Notes:

- 1) Exceeding these ratings may damage the device.
- 2) The maximum allowable power dissipation is a function of the maximum junction temperature T_J(MAX), the junction-to-ambient thermal resistance θ_{JA}, and the ambient temperature T_A. The maximum allowable continuous power dissipation at any ambient temperature is calculated by P_D(MAX)=(T_J(MAX)-T_A)/θ_{JA}. Exceeding the maximum allowable power dissipation will cause excessive die temperature, and the regulator will go into thermal shutdown. Internal thermal shutdown circuitry protects the device from permanent damage.
- 3) The device is not guaranteed to function outside of its operating conditions.
- 4) Measured on JESD51-7 4-layer board.

ELECTRICAL CHARACTERISTICS

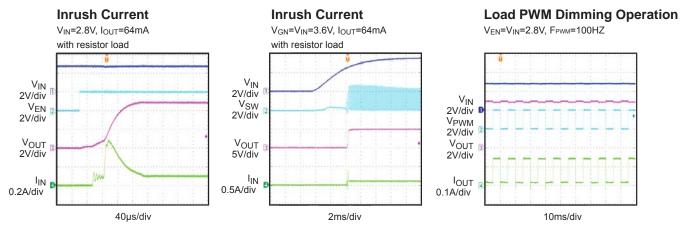
 V_{IN} =3.7V, C_{IN} = C_{OUT} =2.2uF, C_P =0.22µF, T_A =-40°C to +85°C. Typical values are at T_A =25°C, unless otherwise noted.

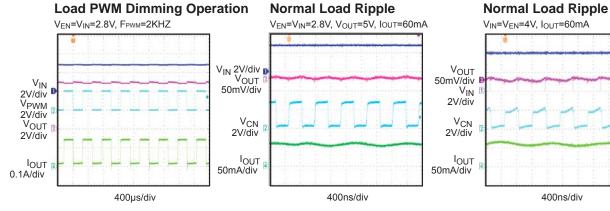
Parameter	Symbol	Condition		Min	Тур	Max	Units
Input Supply Voltage	V _{IN}			2.8		5	V
Output Voltage	V _{OUT}	V _{IN} >3.2V, I _{OUT} <110mA	T _A =25°C	4.8	5	5.2	V
			$-40^\circ C \leq T_A \leq +85^\circ C$	4.6	5	5.2	
Quiescent Current	Ι _Q	I _{OUT} =0			2	4	mA
Maximum Output Current	Ι _Ο	V _{IN} >3.2V		110			mA
Over Current Protection	I _{OCP}	V _{OUT} =5V	V _{OUT} =5V		350	500	mA
Short Circuit Protection	1	T _A =25°C			60	90	mA
	I _{SHORT}	$-40^{\circ}C \leq T_{A} \leq +85^{\circ}C$			60	150	
Output Ripple		I _{OUT} =60mA			30		mV
Shut Down Current	I _{SHDN}	V_{IN} =4.5V, V_{E}	_N <0.4V		0.1	1	μA
Operation Frequency	Fosc			1.1	1.35	1.6	MHz
Enable Voltage, High	V _{EN} (HIGH)				1.5		V
Enable Voltage, Low	V _{EN} (LOW)				0.4		V
Enable Pin Leakage	I _{EN}	V _{EN} =5V			0.2	1	μA


PIN FUNCTIONS

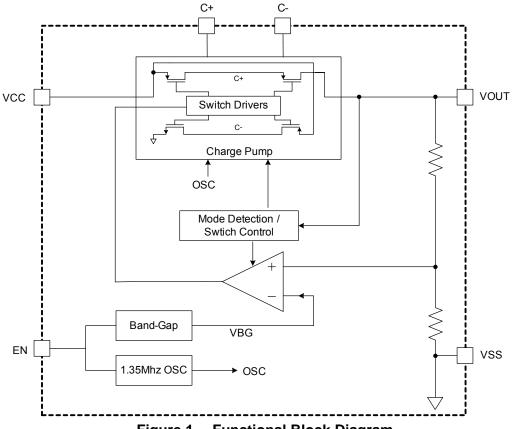
Pin #	Name	Description
1	OUT	Output Voltage. Decoupled with a 2.2µF ceramic capacitor for a load current less than 60mA. For a load current greater than 60mA, use 10µF decoupling capacitor.
2	GND	Ground.
3	EN	Device Enable: A logic high input (V _{EN} >1.5V) turns on the regulator. A logic low input (V _{EN} >0.4V)
4	CN	Flying Capacitor Negative Terminal.
5	IN	Input.
6	CP	Flying Capacitor Positive Terminal.

TYPICAL PERFORMANCE CHARACTERISTICS

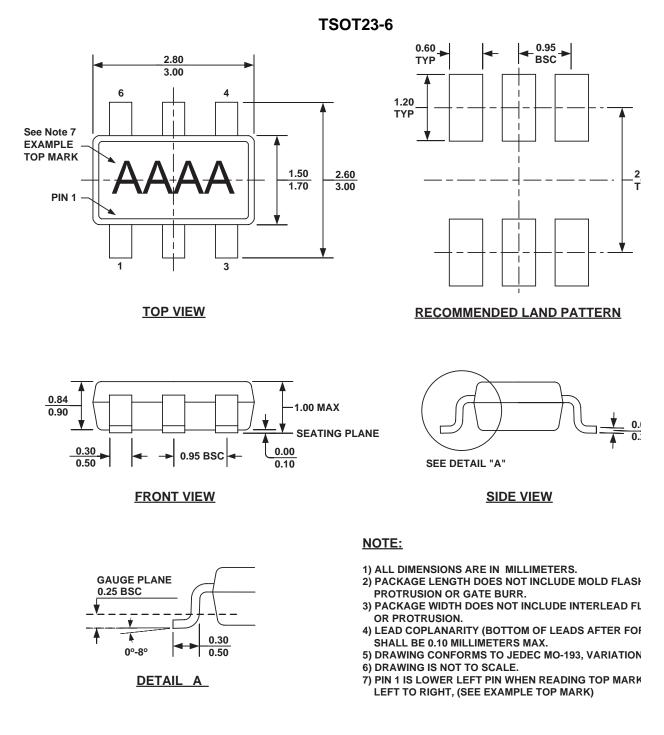

 V_{IN} =3.7V, V_{OUT} =5V, C1=C2=2.2µF, C3=0.47µF. T_A =25°C, unless otherwise noted.


TYPICAL PERFORMANCE CHARACTERISTICS

V_{IN}=3.7V, V_{OUT}=5V, C1=C2=2.2µF, C3=0.47µF. T_A=25°C, unless otherwise noted. (continued)


Load PWM Dimming Operation

OPERATION



The MPQ9361 uses a switched capacitor charge pump to boost an input voltage to a regulated output voltage. Regulation is achieved by sensing the charge pump output voltage through an internal resistor divider network. A switched doubling circuit is enabled when the divided output drops below a preset trip point controlled by an internal comparator.

The switching signal, which drives the charge pump, is created by an integrated oscillator within the control circuit block. The fixed charge pump switching frequency is approximately 1.35MHz. The MPQ9361 has complete output short-circuit and thermal protection to safeguard the device under extreme operating conditions. An internal thermal protection circuit senses die temperature and will shut down the device if the temperature internal iunction exceeds approximately 145°C. The charge pump will remain disabled until the fault condition is relieved.

PACKAGE INFORMATION

NOTICE: The information in this document is subject to change without notice. Users should warrant and guarantee that third party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.