

The following document contains information on Cypress products. Although the document is marked with the name "Spansion" and "Fujitsu", the company that originally developed the specification, Cypress will continue to offer these products to new and existing customers.

Continuity of Specifications

There is no change to this document as a result of offering the device as a Cypress product. Any changes that have been made are the result of normal document improvements and are noted in the document history page, where supported. Future revisions will occur when appropriate, and changes will be noted in a document history page.

Continuity of Ordering Part Numbers

Cypress continues to support existing part numbers. To order these products, please use only the Ordering Part Numbers listed in this document.

For More Information

Please contact your local sales office for additional information about Cypress products and solutions.

About Cypress

Cypress (NASDAQ: CY) delivers high-performance, high-quality solutions at the heart of today's most advanced embedded systems, from automotive, industrial and networking platforms to highly interactive consumer and mobile devices. With a broad, differentiated product portfolio that includes NOR flash memories, F-RAM™ and SRAM, Traveo™ microcontrollers, the industry's only PSoC® programmable system-on-chip solutions, analog and PMIC Power Management ICs, CapSense® capacitive touch-sensing controllers, and Wireless BLE Bluetooth® Low-Energy and USB connectivity solutions, Cypress is committed to providing its customers worldwide with consistent innovation, best-in-class support and exceptional system value.

16-bit Proprietary Microcontroller

F²MC-16LX MB90895 Series

MB90F897/F897S/F897Y*1/F897YS*1/ MB90V495G

■ DESCRIPTION

MB90895 series devices are 16-bit general-purpose microcontrollers designed for applications which need high-speed real-time processing. The devices of this series are high-performance 16-bit CPU microcontrollers employing of the dual operation flash memory and CAN controller on LQFP-48 small package.

The system, inheriting the architecture of F²MC*² family, employs additional instruction ready for high-level languages, expanded addressing mode, enhanced multiply-divide instructions, and enriched bit-processing instructions. Furthermore, employment of 32-bit accumulator achieves processing of long-word data (32 bits).

The peripheral resources of MB90895 series include the following:

8/10-bit A/D converter, UART0/UART1 (SCI), 8/16-bit PPG timer, 16-bit input-output timer (16-bit free-run timer, input capture 0, 1, 2, 3 (ICU)), and CAN controller.

- *1 : These devices are under development. This datasheet provides preliminary information for the devices under development.
- *2: "F2MC" is the abbreviation of FUJITSU Flexible Microcontroller.

■ FEATURES

- Models that support +125°C (MB90F897/S)
- Models that support +150°C (MB90F897Y/YS)
- Clock
 - Built-in PLL clock frequency multiplication circuit
 - Selection of machine clocks (PLL clocks) is allowed among frequency division by two on oscillation clock, and multiplication of 1 to 4 times of oscillation clock (for 4-MHz oscillation clock, 4 MHz to 16 MHz).
 - Operation by sub-clock (8.192 kHz) is allowed. (MB90F897/Y)
 - Minimum execution time of instruction: 62.5 ns (when operating with 4-MHz oscillation clock, and 4-time multiplied PLL clock).

• 16 Mbyte CPU memory space

24-bit internal addressing

(Continued)

For the information for microcontroller supports, see the following web site.

This web site includes the **"Customer Design Review Supplement"** which provides the latest cautions on system development and the minimal requirements to be checked to prevent problems before the system development.

http://edevice.fujitsu.com/micom/en-support/

(Continued)

• Instruction system best suited to controller

- Wide choice of data types (bit, byte, word, and long word)
- Wide choice of addressing modes (23 types)
- Enhanced multiply-divide instructions and RETI instructions
- Enhanced high-precision computing with 32-bit accumulator

Instruction system compatible with high-level language (C language) and multitask

- Employing system stack pointer
- Enhanced various pointer indirect instructions
- Barrel shift instructions

Increased processing speed

• 4-byte instruction queue

• Powerful interrupt function with 8 levels and 34 factors

• Automatic data transfer function independent of CPU

• Extended intelligent I/O service function (El²OS): Maximum of 16 channels

• Low power consumption (standby) mode

- Sleep mode (a mode that halts CPU operating clock)
- Time-base timer mode (a mode that operates oscillation clock, sub clock, time-base timer and watch timer only)
- Watch mode (a mode that operates sub clock and watch timer only)
- Stop mode (a mode that stops oscillation clock and sub clock)
- CPU intermittent operation mode

Process

CMOS technology

• I/O port

• General-purpose input/output port (CMOS output) :

MB90F897/Y : 34 ports (including 4 high-current output ports)
MB90F897S/YS : 36 ports (including 4 high-current output ports)

• Timer

- Time-base timer, watch timer, watchdog timer: 1 channel
- 8/16-bit PPG timer: 8-bit x 4 channels, or 16-bit x 2 channels
- 16-bit reload timer: 2 channels
- 16-bit input/output timer
 - 16-bit free run timer: 1 channel
 - 16-bit input capture: (ICU): 4 channels

Interrupt request is issued upon latching a count value of 16-bit free run timer by detection of an edge on pin input.

CAN controller: 1 channel

- Complied with Ver 2.0A and Ver 2.0B CAN specifications
- 8 built-in message buffers
- Transmission rate of 10 kbps to 1 Mbps (by 16 MHz machine clock)
- CAN wake-up

• UARTO (SCI), UART1(SCI): 2 channels

- Equipped with full-duplex double buffer
- Clock-asynchronous or clock-synchronous serial transmission is available.

• DTP/External interrupt: 4 channels, CAN wake-up: 1channel

Module for activation of extended intelligent I/O service (EI²OS), and generation of external interrupt.

• Delay interrupt generator module

Generates interrupt request for task switching.

• 8/10-bit A/D converter: 8 channels

- Resolution is selectable between 8-bit and 10-bit.
- Activation by external trigger input is allowed.
- Conversion time: 6.125 μs (at 16-MHz machine clock, including sampling time)

Program patch function

• Address matching detection for 2 address pointers.

■ PRODUCT LINEUP

Part number		MB90F897 MB90F897S MB90F897Y (Under development) MB90F897YS (Under development)	MB90V495G	
Classification		Flash ROM	Evaluation product	
ROM capacity		64 Kbytes	<u>—</u>	
RAM capacity		2 Kbytes	6 Kbytes	
Process		CMC	OS .	
Package		LQFP-48 (pin pitch 0.50 mm)	PGA256	
Operating power su	ipply voltage	3.5 V to 5.5 V	4.5 V to 5.5 V	
Special power supp	oly for emulator*1	_	None	
CPU functions		Number of basic instructions: 351 instruction length: 1 byte to 7 bytes Data bit length: 1 bit, 8 bits, 16 bits Minimum instruction execution time: 6		
		Interrupt processing time : 1.5 μs at mi	·	
Low power consum (standby) mode	ption	Sleep mode/Watch mode/Time-base ti Stop mode/CPU intermittent		
I/O port		General-purpose input/output ports (CMOS output): 34 ports (36 ports*2) including 4 high-current output ports (P14 to P17)		
Time-base timer		18-bit free-run counter Interrupt cycle: 1.024 ms, 4.096 ms, 16.834 ms, 131.072 ms (with oscillation clock frequency at 4 MHz)		
Watchdog timer		Reset generation cycle: 3.58 ms, 14.33 ms, 57.23 ms, 458.75 ms (with oscillation clock frequency at 4 MHz)		
16-bit input/output	16-bit free-run timer	Number of channels: 1 Interrupt upon occurrence of overflow		
timer	Input capture	Number of channels: 4 Retaining free-run timer value set by pin input (rising edge, falling edge, and both edges)		
16-bit reload timer		Number of channels: 2 16-bit reload timer operation Count clock cycle: 0.25 μs, 0.5 μs, 2.0 μs (at 16-MHz machine clock frequency) External event count is allowed.		
Watch timer		15-bit free-run counter Interrupt cycle: 31.25 ms, 62.5 ms, 12 ms, 250 ms, 500 ms, 1.0 s, 2.0 s (with 8.192 kHz sub clock)		
8/16-bit PPG timer		Number of channels: 2 (four 8-bit channels are available also.) PPG operation is allowed with four 8-bit channels or one 16-bit channel. Outputting pulse wave of arbitrary cycle or arbitrary duty is allowed. Count clock: 62.5 ns to 1 µs (with 16 MHz machine clock)		
Delay interrupt gen	erator module	Interrupt generator module for task swi	tching. Used for real-time OS.	

(Continued)

Part number Parameter	MB90F897 MB90F897S MB90F897Y (Under development) MB90F897YS (Under development)	MB90V495G
DTP/External interrupt	Number of inputs: 4 Activated by rising edge, falling edge, External interrupt or extended intelligen	
8/10-bit A/D converter	Sequential conversion of two or more so a maximum of 8 channels is allowed.) Single conversion mode : Selected Sequential conversion mode: Selected Halt conversion mode : Conversion mode	· · · · · · · · · · · · · · · · · · ·
UARTO (SCI)	Number of channels: 1 Clock-synchronous transfer: 62.5 kbps Clock-asynchronous transfer: 1,202 bp Communication is allowed by bi-direction master/slave type connection.	os to 62,500 bps
UART1 (SCI)	Number of channels: 1 Clock-synchronous transfer: 62.5 kbps Clock-asynchronous transfer: 9,615 bp Communication is allowed by bi-direction master/slave type connection.	os to 500 kbps
CAN	Complied with Ver 2.0A and Ver 2.0B 8 built-in message buffers. Transmission rate of 10 kbps to 1 Mbp CAN wake-up	·

^{*1 :} Settings of DIP switch S2 for using emulation pod MB2145-507. For details, see MB2145-507 Hardware Manual (2.7 Power Pin solely for Emulator).

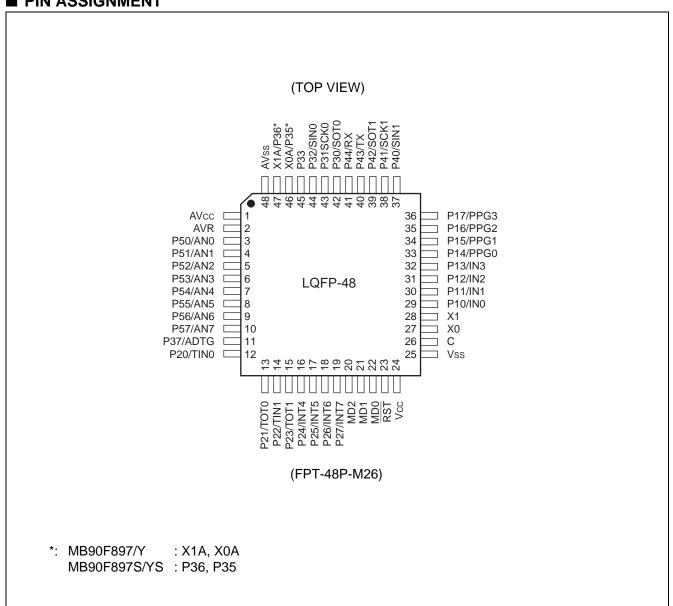
■ PACKAGES AND PRODUCT MODELS

Package	MB90F897/S/Y/YS
FPT-48P-M26	0

 $[\]bigcirc$: Yes, \times : No

Note : Refer to "■ PACKAGE DIMENSION" for details of the package.

^{*2:} MB90F897S/YS


■ PRODUCT COMPARISON

Memory space

When testing with test product for evaluation, check the differences between the product and a product to be used actually. Pay attention to the following points:

- The MB90V495G has no built-in ROM. However, a special-purpose development tool allows the operations as those of one with built-in ROM. ROM capacity depends on settings on a development tool.
- On MB90V495G, an image from FF4000_H to FFFFFF_H is viewed on 00 bank and an image of FE0000_H to FF3FFF_H is viewed only on FE bank and FF bank. (Modified on settings of a development tool.)
- On MB90F897/S/Y/YS, an image from FF4000_H to FFFFFF_H is viewed on 00 bank and an image of FF0000_H to FF3FFF_H is viewed only on FF bank.

■ PIN ASSIGNMENT

■ PIN DESCRIPTION

Pin No.	Pin name	Circuit type	Function	
1	AVcc	_	Vcc power input pin for A/D converter.	
2	AVR	_	Power (Vref+) input pin for A/D converter. Use as input for Vcc or lower.	
	P50 to P57		General-purpose input/output ports.	
3 to 10	AN0 to AN7	E	Functions as analog input pin for A/D converter. Valid when analog input setting is "enabled."	
	P37		General-purpose input/output ports.	
11	ADTG	D	Function as an external trigger input pin for A/D converter. Use the pin by setting as input port.	
	P20		General-purpose input/output ports.	
12	TIN0	D	Function as an event input pin for reload timer 0. Use the pin by setting as input port.	
	P21		General-purpose input/output ports.	
13	ТОТ0	D	Function as an event output pin for reload timer 0. Valid only when output setting is "enabled."	
	P22		General-purpose input/output ports.	
14	TIN1	D	Function as an event input pin for reload timer 1. Use the pin by setting as input port.	
	P23		General-purpose input/output ports.	
15	TOT1	D	Function as an event output pin for reload timer 1. Valid only when output setting is "enabled."	
16 to 19	P24 to P27	D	General-purpose input/output ports.	
10 10 19	INT4 to INT7	D	Functions as external interrupt input pin. Use the pin by setting as input port.	
20	MD2	F	Input pin for specifying operation mode. Connect directly to Vss.	
21	MD1	С	Input pin for specifying operation mode. Connect directly to Vcc.	
22	MD0	С	Input pin for specifying operation mode. Connect directly to Vcc.	
23	RST	В	External reset input pin.	
24	Vcc		Power supply (5 V) input pin.	
25	Vss	_	Power supply (0 V) input pin.	
26	С	_	Capacitor pin for stabilizing power supply. Connect a ceramic capacitor of approximately 0.1 $\mu\text{F}.$	
27	X0	А	Pin for high-rate oscillation.	
28	X1	А	Pin for high-rate oscillation.	
	P10 to P13		General-purpose input/output ports.	
29 to 32	IN0 to IN3	D	Functions as trigger input pins of input capture channels 0 to 3. Use the pins by setting as input ports.	

(Continued)

Pin No.	Pin name	Circuit type	Function
	P14 to P17		General-purpose input/output ports. High-current output ports.
33 to 36	PPG0 to PPG3	G	Functions as output pin of PPG timers 01 and 23. Valid when output setting is "enabled."
37	P40	D	General-purpose input/output port.
31	SIN1	U	Serial data input pin for UART1. Use the pin by setting as input port.
	P41		General-purpose input/output port.
38	SCK1	D	Serial clock input/output pin for UART1. Valid only when serial clock input/output setting on UART1 is "enabled."
	P42		General-purpose input/output port.
39	SOT1	D	Serial data output pin for UART1. Valid only when serial data output setting on UART1 is "enabled."
	P43		General-purpose input/output port.
40	TX	D	Transmission output pin for CAN. Valid only when output setting is "enabled."
41	P44	D	General-purpose input/output port.
41	RX	U	Receive input pin for CAN. Use the pin by setting as input port.
	P30		General-purpose input/output port.
42	SOT0	D	Serial data output pin for UART0. Valid only when serial data output setting on UART0 is "enabled."
	P31		General-purpose input/output port.
43	SCK0	D	Serial clock input/output pin for UART0. Valid only when serial clock input/output setting on UART0 is "enabled."
44	P32	Н	General-purpose input/output port.
44	SIN0	11	Serial data input/output pin for UART0. Use the pin by setting as input port.
45	P33	D	General-purpose input/output port.
46	X0A*	Α	Pin for low-rate oscillation.
	P35*		General-purpose input/output port.
47	X1A*	Α	Pin for low-rate oscillation.
¬1	P36*		General-purpose input/output port.
48	AVss		Vss power supply input pin for A/D converter.

*: MB90F897/Y : X1A, X0A MB90F897S/YS : P36, P35

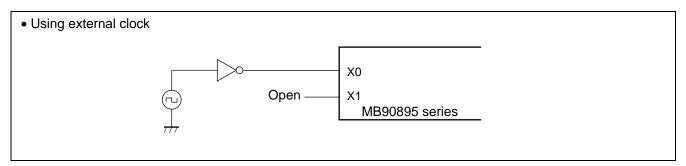
■ I/O CIRCUIT TYPE

Туре	Circuit	Remarks
A	Clock input X1A X0 X0A Standby control signal	 High-rate oscillation feedback resistor, approx. 1 MΩ Low-rate oscillation feedback resistor, approx. 10 MΩ
В	R ≷ R → W → Hysteresis input	 Hysteresis input with pull-up resistor. Pull-up resistor, approx. 50 kΩ
С	R	Hysteresis input
D	P-ch Digital output N-ch Digital output N-ch Digital output N-ch Digital output Hysteresis input Standby control R Automotive input	CMOS hysteresis input CMOS level output Standby control provided Automotive input
Е	P-ch Digital output N-ch Digital output Analog input	CMOS hysteresis input CMOS level output Shared for analog input pin Standby control provided Automotive input

Type	Circuit	Remarks
F	R Hysteresis input	 Hysteresis input with pull-down resistor Pull-down resistor, approx. 50 kΩ FLASH product is not provided with pull-down resistor.
G	Vcc P-ch High-current output High-current output N-ch Vss Hysteresis input Standby control R Automotive input	CMOS hysteresis input CMOS level output (high-current output) Standby control provided Automotive input
Н	Digital output Digital output R Hysteresis input Automotive input Standby control	CMOS hysteresis input CMOS level output Standby control provided CMOS input Automotive input

■ HANDLING DEVICES

• Do Not Exceed Maximum Rating (preventing "latch up")


- Latch-up may occur in a CMOS IC if a voltage higher than Vcc or less than Vss is applied to an input or output pin or if a voltage exceeding the rated value is applied between Vcc pin and Vss pins.
- Latch-up causes drastic increase of power current, which may lead to destruction of elements by heat. Extreme caution must be taken not to exceed maximum rating.
- When turning on and off analog power supply, take extra care not to apply an analog power voltages (AVcc and AVR) and analog input voltage that are higher than digital power voltage (Vcc).

Handling Unused Pins

Leaving unused input pins open may cause permanent destruction by malfunction or latch-up. Apply pull-up
or pull-down process to the unused pins using resistors of 2 kΩ or higher. Leave unused I/O pins open under
output status, or process as input pins if they are under input status.

Using External Clock

• When using an external clock, drive only X0 pin and leave X1 pin open. An example of using an external clock is shown below.

Notes When Using No Sub Clock on MB90F897/Y

• If an oscillator is not connected to X0A and X1A pins, apply pull-down resistor to the X0A pin and leave the X1A pin open.

About Power Supply Pins

- If two or more Vcc and Vss exist, the pins that should be at the same potential are connected to each other inside the device. For reducing unwanted emissions and preventing malfunction of strobe signals caused by increase of ground level, however, be sure to connect the Vcc and Vss pins to the power supply and the ground externally.
- Pay attention to connect a power supply to Vcc and Vss pins of MB90895 series device in a lowest-possible impedance.
- Near pins of MB90895 series device, connecting a bypass capacitor is recommended at 0.1 μ F across Vcc and Vss pins.

• Crystal Oscillator Circuit

- Noises around X0 and X1 pins cause malfunctions on a MB90895 series device. Design a print circuit so that X0 and X1 pins, an crystal oscillator (or a ceramic oscillator), and bypass capacitor to the ground become as close as possible to each other. Furthermore, avoid wires to X0 and X1 pins crossing each other as much as possible.
- Print circuit designing that surrounds X0 and X1 pins with grounding wires, which ensures stable operation, is strongly recommended.

• Caution on Operations during PLL Clock Mode

• If the PLL clock mode is selected, the microcontroller attempt to be working with the self-oscillating circuit even when there is no external oscillator or external clock input is stopped. Performance of this operation, however, cannot be guaranteed.

Sequence of Turning on Power of A/D Converter and Applying Analog Input

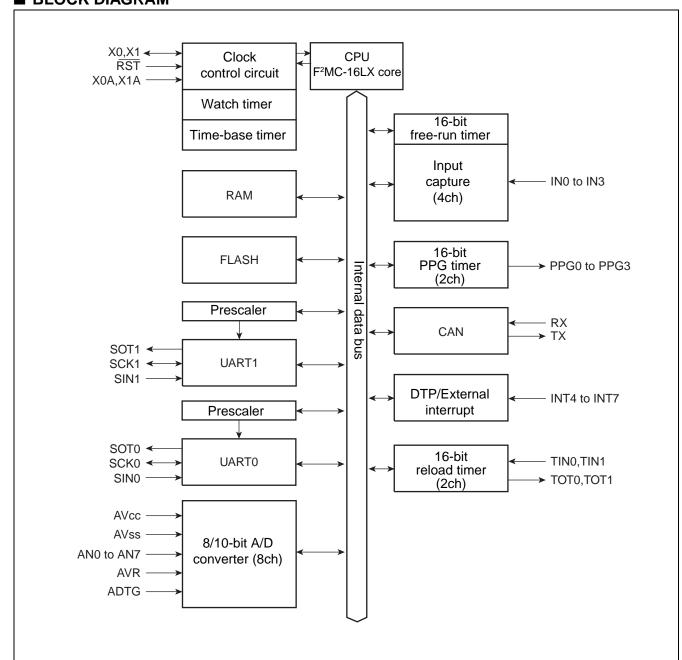
- Be sure to turn on digital power (Vcc) before applying signals to the A/D converter and applying analog input signals (AN0 to AN7 pins).
- Be sure to turn off the power of A/D converter and analog input before turning off the digital power supply.
- Be sure not to apply AVR exceeding AVcc when turning on and off. (No problems occur if analog and digital power is turned on and off simultaneously.)

• Handling Pins When A/D Converter is Not Used

 If the A/D converter is not used, connect the pins under the following conditions: "AVcc=AVR=Vcc," and "AVss=Vss".

• Note on Turning on Power

• For preventing malfunctions on built-in step-down circuit, maintain a minimum of 50 μs of voltage rising time (between 0.2 V and 2.7 V) when turning on the power.

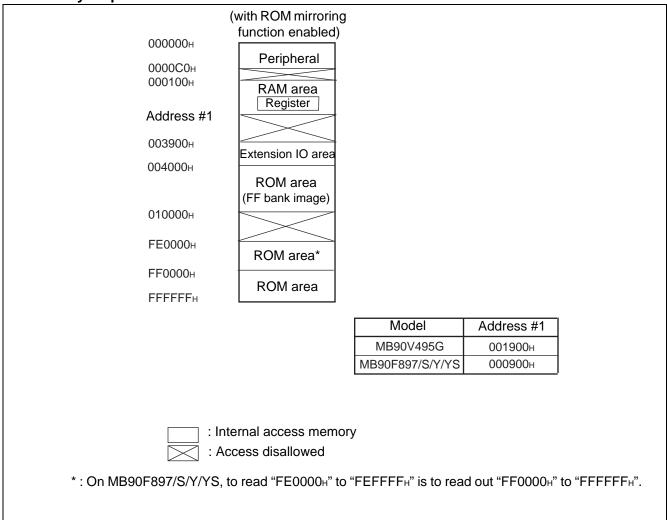

Stabilization of supply voltage

A sudden change in the supply voltage may cause the device to malfunction even within the specified Vcc supply voltage operating range. Therefore, the Vcc supply voltage should be stabilized.
 For reference, the supply voltage should be controlled so that Vcc ripple variations (peak-to-peak values) at commercial frequencies (50 / 60Hz) fall below 10% of the standard Vcc supply voltage and the coefficient of fluctuation does not exceed 0.1 V/ms at instantaneous power switching.

• Support for +125°C / +150°C

• Users considering application exceeding $T_A = +105$ °C are advised to contact their representatives beforehand for reliability limitations.

■ BLOCK DIAGRAM



■ MEMORY MAP

1. Memory allocation of MB90895

MB90895 series model outputs 24-bit wide internal address bus and up to 24-bit of external address bus. A maximum of 16 Mbyte memory space of external access memory is accessible.

2. Memory map

Note: When internal ROM is operating, F2MC-16LX allows viewing ROM data image on FF bank at upper-level of 00 bank. This function is called "mirroring ROM," which allows effective use of C compiler small model. F2MC-16LX assigns the same low order 16-bit address to FF bank and 00 bank, which allows referencing table in ROM without specifying "far" using pointer.

For example, when accessing to "00C000H", ROM data at "FFC000H" is accessed actually. However, because ROM area of FF bank exceeds 48 Kbytes, viewing all areas is not possible on 00 bank image. Because ROM data of "FF4000H" to "FFFFFFH" is viewed on "004000H" to "00FFFFH" image, store a ROM data table in area "FF4000H" to "FFFFFFH."

■ I/O MAP

Address	Register abbreviation	Register	Read/ Write	Resource	Initial value
000000н		(Reserv	/ed area) *		
000001н	PDR1	Port 1 data register	R/W	Port 1	XXXXXXXX
000002н	PDR2	Port 2 data register	R/W	Port 2	XXXXXXXX
000003н	PDR3	Port 3 data register	R/W	Port 3	XXXXXXXX
000004н	PDR4	Port 4 data register	R/W	Port 4	XXXXXXXX
000005н	PDR5	Port 5 data register	R/W	Port 5	XXXXXXXXB
000006н to 000010н		(Reserv	/ed area) *		
000011н	DDR1	Port 1 direction data register	R/W	Port 1	0000000в
000012н	DDR2	Port 2 direction data register	R/W	Port 2	0000000В
000013н	DDR3	Port 3 direction data register	R/W	Port 3	000Х0000в
000014н	DDR4	Port 4 direction data register	R/W	Port 4	ХХХ00000в
000015н	DDR5	Port 5 direction data register	R/W	Port 5	0000000В
000016н to 00001Ан		(Reserv	ved area) *		
00001Вн	ADER	Analog input permission register	R/W	8/10-bit A/D converter	11111111в
00001Сн to 00001Fн		(Reserv	/ed area) *		
000020н	SMR0	Serial mode register 0	R/W		0000000В
000021н	SCR0	Serial control register 0	R/W, W		00000100в
000022н	SIDR0/ SODR0	Serial input data register 0/ Serial output data register 0	R, W	LIADTO	XXXXXXXXB
000023н	SSR0	Serial status register 0	R, R/W	- UART0	00001Х00в
000024н	CDCR0	Communication prescaler control register 0	R/W		0XXX1111в
000025н	SES0	Serial edge selection register 0	R/W	1	XXXXXXX0 _B
000026н	SMR1	Serial mode register 1	R/W		0000000в
000027н	SCR1	Serial control register 1	R/W, W		00000100в
000028н	SIDR1/ SODR1	Serial input data register 1/ Serial output data register 1	R, W	UART1	XXXXXXXXB
000029н	SSR1	Serial status data register 1	R, R/W		00001000в
00002Ан		(Reserv	/ed area) *	•	•
00002Вн	CDCR1	Communication prescaler control register 1	R/W	UART1	0XXX0000 _B

Address	Register abbreviation	Register	Read/ Write	Resource	Initial value
00002Сн to 00002Fн		(Reserv	red area) *		
000030н	ENIR	DTP/External interrupt permission register	R/W		0000000В
000031н	EIRR	DTP/External interrupt source register	R/W	DTP/External interrupt	XXXXXXXXB
000032н	ELVD.	Detection level action are sisten	R/W		0000000в
000033н	ELVR	Detection level setting register	R/W		0000000В
000034н	4 DOC	A/D control otatus na sistan	R/W		0000000в
000035н	ADCS	A/D control status register	R/W, W	8/10-bit	0000000В
000036н	4000	A (D.)	W, R	A/D converter	XXXXXXXXB
000037н	ADCR	A/D data register	R		00101XXXв
000038н to 00003Ен		(Reserv	red area) *		
00003Fн	PSCCR	PLL/Subclock control register	R/W, W	Clock	XXXX0000 _B
000040н	PPGC0	PPG0 operation mode control register	R/W, W		0X000XX1в
000041н	PPGC1	PPG1 operation mode control register	R/W, W	8/16-bit PPG timer 0/1	0Х000001в
000042н	PPG01	PPG0/1 count clock selection register	R/W		000000XX _B
000043н		(Reserv	red area) *		
000044н	PPGC2	PPG2 operation mode control register	R/W, W		0X000XX1в
000045н	PPGC3	PPG3 operation mode control register	R/W, W	8/16-bit PPG timer 2/3	0Х000001в
000046н	PPG23	PPG2/3 count clock selection register	R/W		000000XX _B
000047н to 00004Fн		(Reserv	red area) *		(Continued

Address	Register abbreviation	Register	Read/ Write	Resource	Initial value			
000050н	IPCP0	Input conture data register 0	R		XXXXXXXXB			
000051н	IFCFU	Input capture data register 0	K		XXXXXXXXB			
000052н	IPCP1	Input capture data register 1	R		XXXXXXXXB			
000053н	IFCFI	Input capture data register 1	K		XXXXXXXX			
000054н	ICS01	Input capture control status register	R/W	16-bit input/output	0000000В			
000055н	ICS23	imput capture control status register	F/VV	timer	0000000В			
000056н	TCDT	Timer counter data register	R/W	1	0000000В			
000057н	ICDI	Timer counter data register	FC/VV		0000000в			
000058н	TCCS	Timer counter control status register	R/W		0000000В			
000059н		(Reserv	ed area) *					
00005Ан	IDCD2	Input conture data register 2	D		XXXXXXXXB			
00005Вн	IPCP2	Input capture data register 2	R	16-bit input/output	XXXXXXXXB			
00005Сн	IDODO	land and an eletan projette a	-	timer	XXXXXXXXB			
00005Дн	IPCP3	Input capture data register 3	R		XXXXXXXXB			
00005Ен								
to 000065н		(Reserv	ed area) *					
000066н	TMCSR0		R/W	16-bit reload timer 0	0000000в			
000067н	TWOORG	Fimer control status register	R/W		ХХХХ0000в			
000068н	TMCSR1	Timer control status register	R/W	16-bit reload timer 1	0000000В			
000069н	TWOORT		R/W	TO DIL TOIGUG LIMEL T	XXXX0000 _B			
00006Ан		45	. \.					
to 00006Ен		(Reserv	ed area) *					
00006Fн	ROMM	ROM mirroring function selection register	W	ROM mirroring function selection module	XXXXXXX1 _B			
000070н to 00007Fн		(Reserved area) *						
000080н	BVALR	Message buffer enabling register	R/W	CAN controller	0000000В			
000081н			ed area) *					
000082н	TREQR	Send request register	R/W	CAN controller	0000000В			
000083н			ed area) *	1				
000084н	TCANR	Send cancel register	W	CAN controller	0000000В			
000085н		(Reserved area) *						
000086н	TCR	Send completion register	R/W	CAN controller	0000000В			
	L				(Continued			

Address	Register abbreviation	Register	Read/ Write	Resource	Initial value			
000087н		(Reserved area) *						
000088н	RCR	Receive completion register	R/W	CAN controller	0000000В			
000089н		(Reserv	ed area) *					
00008Ан	RRTRR	Receive RTR register	R/W	CAN controller	0000000В			
00008Вн		(Reserv	ed area) *					
00008Сн	ROVRR	Receive overrun register	R/W	CAN controller	0000000В			
00008Dн		(Reserv	ed area) *					
00008Ен	RIER	Receive completion interrupt permission register	R/W	CAN controller	0000000в			
00008Fн to 00009Dн		(Reserved area) *						
00009Ен	PACSR	Address detection control register	R/W	Address matching detection function	0000000в			
00009Fн	DIRR	Delay interrupt request generation/ release register	R/W	Delay interrupt generation module	XXXXXXX0 _B			
0000А0н	LPMCR	Lower power consumption mode control register	W,R/W	Lower power consumption mode	00011000в			
0000А1н	CKSCR	Clock selection register	R,R/W	Clock	11111100в			
0000А2н	PILR	Port input level selection register	R/W	I/O	000000Хв			
0000A3н to 0000A7н		(Reserv	ed area) *					
0000А8н	WDTC	Watchdog timer control register	R,W	Watchdog timer	XXXXX111 _B			
0000А9н	TBTC	Time-base timer control register	R/W,W	Time-base timer	1ХХ00100в			
0000ААн	WTC	Watch timer control register	R,R/W	Watch timer	1Х001000в			
0000ABн to 0000ADн	(Reserved area) *							
0000АЕн	FMCS	Flash memory control status register	R,W,R/W	512K-bit flash memory	000Х0000в			
0000АFн		(Reserv	ed area) *					

Address	Register abbreviation	Register	Read/ Write	Resource	Initial value
0000В0н	ICR00	Interrupt control register 00			00000111в
0000В1н	ICR01	Interrupt control register 01			00000111в
0000В2н	ICR02	Interrupt control register 02			00000111в
0000ВЗн	ICR03	Interrupt control register 03			00000111в
0000В4н	ICR04	Interrupt control register 04			00000111в
0000В5н	ICR05	Interrupt control register 05			00000111в
0000В6н	ICR06	Interrupt control register 06			00000111в
0000В7н	ICR07	Interrupt control register 07	R/W	Interrupt controller	00000111в
0000В8н	ICR08	Interrupt control register 08	FX/VV	interrupt controller	00000111в
0000В9н	ICR09	Interrupt control register 09			00000111в
0000ВАн	ICR10	Interrupt control register 10			00000111в
0000ВВн	ICR11	Interrupt control register 11			00000111в
0000ВСн	ICR12	Interrupt control register 12			00000111в
0000ВДн	ICR13	Interrupt control register 13			00000111в
0000ВЕн	ICR14	Interrupt control register 14			00000111в
0000ВFн	ICR15	Interrupt control register 15			00000111в
0000С0н to 0000FFн		(Reserve	d area) *		
001FF0н		Detection address setting register 0 (low-order)			XXXXXXX
001FF1н	PADR0	Detection address setting register 0 (middle-order)	R/W		XXXXXXX
001FF2н		Detection address setting register 0 (high-order)		Address matching	XXXXXXX
001FF3н		Detection address setting register 1 (low-order)		detection function	XXXXXXX
001FF4н	PADR1	Detection address setting register 1 (middle-order)	R/W		XXXXXXXXB
001FF5н		Detection address setting register 1 (high-order)			XXXXXXXXB
003900н	TMR0/	16-bit timer register 0/16-bit reload	D 1/1	16 hit roload times 0	XXXXXXXXB
003901н	TMRLR0	register 0	R,W	16-bit reload timer 0	XXXXXXXXB
003902н	TMR1/	16-bit timer register 1/16-bit reload	D \\/	16-bit reload timer 1	XXXXXXXXB
003903н	TMRLR1	register 1	R,W	To-bit reload timer 1	XXXXXXXXB
003904н to 003909н		(Reserve	d area) *		(Continued

20

Address	Register abbreviation	Register	Read/ Write	Resource	Initial value					
00390Ан	FWR0	FLASH programing control register 0	R/W	5	0000000В					
00390Вн	FWR1	FLASH programing control register 1	R/W	Dual operation FLASH	0000000В					
00390Сн	SSR0	Sector conversion set register	R/W		00XXXXX0 _B					
00390Dн to 00390Fн		(Reserved	d area) *							
003910н	PRLL0	PPG0 reload register L	R/W		XXXXXXX					
003911н	PRLH0	PPG0 reload register H	R/W	1	XXXXXXXXB					
003912н	PRLL1	PPG1 reload register L	R/W	1	XXXXXXXXB					
003913н	PRLH1	PPG1 reload register H	R/W	0/40 1/4 DDO (1/2)	XXXXXXXX					
003914н	PRLL2	PPG2 reload register L	R/W	8/16-bit PPG timer	XXXXXXXX					
003915н	PRLH2	PPG2 reload register H	R/W		XXXXXXXXB					
003916н	PRLL3	PPG3 reload register L	R/W		XXXXXXXXB					
003917н	PRLH3	PPG3 reload register H	R/W	1	XXXXXXXXB					
003918н to 00392Fн		(Reserved	d area) *							
003930н to 003BFFн		(Reserved area) *								
003С00н to 003С0Fн		RAM (General-p	ourpose R	AM)						
003С10н to 003С13н	IDR0	ID register 0	R/W		XXXXXXXXB to XXXXXXXXB					
003С14н to 003С17н	IDR1	ID register 1	R/W		XXXXXXXXB to XXXXXXXXB					
003С18н to 003С1Вн	IDR2	ID register 2	R/W		XXXXXXXXB to XXXXXXXXB					
003С1Сн to 003С1Fн	IDR3	ID register 3	R/W	CAN controller	XXXXXXXXB to XXXXXXXXB					
003С20н to 003С23н	IDR4	ID register 4	R/W		XXXXXXXXB to XXXXXXXXB					
003С24н to 003С27н	IDR5	ID register 5	R/W		XXXXXXXXB to XXXXXXXXB					
003С28н to 003С2Вн	IDR6	ID register 6	R/W		XXXXXXXB to XXXXXXXXB (Continued)					

Address	Register abbreviation	Register	Read/ Write	Resource	Initial value
003С2Сн to 003С2Fн	IDR7	ID register 7	R/W		XXXXXXXXB to XXXXXXXXB
003С30н 003С31н	DLCR0	DLC register 0	R/W		XXXXXXXXB XXXXXXXXB
003С32н 003С33н	DLCR1	DLC register 1	R/W		XXXXXXXXB XXXXXXXXB
003С34н 003С35н	DLCR2	DLC register 2	R/W		XXXXXXXXB XXXXXXXXB
003С36н 003С37н	DLCR3	DLC register 3	R/W		XXXXXXXXB XXXXXXXXB
003С38н 003С39н	DLCR4	DLC register 4	R/W		XXXXXXXB XXXXXXXB
003С3Ан 003С3Вн	DLCR5	DLC register 5	R/W	_	XXXXXXXXB XXXXXXXXB
003С3Сн 003С3Dн	DLCR6	DLC register 6	R/W		XXXXXXXB XXXXXXXB
003С3Ен 003С3Fн	DLCR7	DLC register 7	R/W	CAN controller	XXXXXXXB XXXXXXXB
003С40н to 003С47н	DTR0	Data register 0	R/W		XXXXXXXXB to XXXXXXXXB
003С48н to 003С4Fн	DTR1	Data register 1	R/W		XXXXXXXXB to XXXXXXXXB
003С50н to 003С57н	DTR2	Data register 2	R/W		XXXXXXXXB to XXXXXXXXB
003С58н to 003С5Fн	DTR3	Data register 3	R/W		XXXXXXXXB to XXXXXXXXB
003С60н to 003С67н	DTR4	Data register 4	R/W		XXXXXXXXB to XXXXXXXXB
003С68н to 003С6Fн	DTR5	Data register 5	R/W		XXXXXXXXB to XXXXXXXXB
003С70н to 003С77н	DTR6				XXXXXXXXB to XXXXXXXXB
003С78н to 003С7Fн	DTR7				XXXXXXXXB to XXXXXXXXB

(Continued)

Address	Register abbreviation	Register	Read/ Write	Resource	Initial value					
003С80н to 003СFFн		(Reserve	ed area) *							
003D00н 003D01н	CSR	Control status register	R/W, R	CAN controller	0XXXX001в 00XXX000в					
003D02н	LEIR	Last event display register	R/W		000ХХ000в					
003D03н		(Reserve	ed area) *							
003D04н 003D05н	RTEC	Send/receive error counter	R	CAN controller	0000000в 0000000в					
003D06н 003D07н	BTR	Bit timing register	R/W		11111111в X1111111в					
003D08н	IDER	IDE register	R/W		XXXXXXXXB					
003D09н		(Reserved area) *								
003D0Ан	TRTRR	Send RTR register	R/W		0000000в					
003D0Вн	(Reserved area) *									
003D0Сн	RFWTR	Remote frame receive wait register	R/W	CAN controller	XXXXXXXXB					
003D0Dн		(Reserve	ed area) *							
003D0Ен	TIER	Send completion interrupt		CAN controller	0000000В					
003D0Fн		(Reserve	ed area) *	1	1					
003D10н 003D11н	AMSR	Acceptance mask selection register	R/W	CAN controller	XXXXXXXXB XXXXXXXXB					
003D12н 003D13н		(Reserve	ed area) *	•						
003D14н to 003D17н	AMR0	Acceptance mask register 0	R/W	- CAN controller	XXXXXXXXB to XXXXXXXXB					
003D18н to 003D1Вн	AMR1	Acceptance mask register 1	R/W	- CATA CONTROLLE	XXXXXXXB to XXXXXXXXB					
003D1Сн to 003DFFн		(Reserve	ed area) *							
003E00н to 003EFFн		(Reserved area) *								
003FF0н to 003FFFн	(Reserved area) *									

Initial values:

22

0: Initial value of this bit is "0." 1 : Initial value of this bit is "1."

X: Initial value of this bit is undefined.

^{*: &}quot;Reserved area" should not be written anything. Result of reading from "Reserved area" is undefined.

■ INTERRUPT SOURCES, INTERRUPT VECTORS, AND INTERRUPT CONTROL REGISTERS

latamunt accura	El ² OS	Ir	nterrup	ot vector	Interrupt c	ontrol register	Du' 42
Interrupt source	readiness	Nur	nber	Address	ICR	Address	Priority*3
Reset	×	#08	08н	FFFFDC⊢	_	_	High
INT 9 instruction	×	#09	09н	FFFFD8 _H	_	_	\uparrow
Exceptional treatment	×	#10	ОАн	FFFFD4 _H	_	_	
CAN controller reception completed (RX)	×	#11	0Вн	FFFFD0 _H			
CAN controller transmission completed (TX) / Node status transition (NS)	×	#12	0Сн	FFFFCCH	ICR00	0000В0н*1	
Reserved	×	#13	0Дн	FFFFC8 _H	ICR01	0000В1н	
Reserved	×	#14	0Ен	FFFFC4 _H	ICRUI	UUUUD IH	
CAN wakeup	Δ	#15	0Fн	FFFFC0 _H	IODOO	000000 *1	
Time-base timer	×	#16	10н	FFFFBC⊦	ICR02	0000В2н*1	
16-bit reload timer 0	Δ	#17	11н	FFFFB8⊦	IODOO	000000 *1	
8/10-bit A/D converter	Δ	#18	12н	FFFFB4 _H	ICR03	0000ВЗн*1	
16-bit free-run timer overflow	Δ	#19	13н	FFFFB0 _H	ICR04	0000004 *1	
Reserved	×	#20	14н	FFFFAC⊢	ICR04	0000В4н*1	
Reserved	×	#21	15н	FFFFA8 _H	ICDOF	0000DE *1	
PPG timer ch.0, ch.1 underflow	×	#22	16н	FFFFA4 _H	ICR05	0000B5н*1	
Input capture 0-input	Δ	#23	17н	FFFFA0 _H	ICDOC	000000 *1	
External interrupt (INT4/INT5)	Δ	#24	18н	FFFF9C _H	ICR06	0000В6н*1	
Input capture 1-input	Δ	#25	19н	FFFF98⊦	ICR07	0000D7 *2	
PPG timer ch.2, ch.3 underflow	×	#26	1Ан	FFFF94 _H	ICRU/	0000B7н* ²	
External interrupt (INT6/INT7)	Δ	#27	1Вн	FFFF90 _H	ICDO	000000 *1	
Watch timer	Δ	#28	1Сн	FFFF8C _H	ICR08	0000В8н*1	
Reserved	×	#29	1Dн	FFFF88 _H			
Input capture 2-input Input capture 3-input	×	#30	1Ен	FFFF84 _H	ICR09	0000В9н*1	
Reserved	×	#31	1F _H	FFFF80 _H	IOD40	000000 4 *1	
Reserved	×	#32	20н	FFFF7C _H	ICR10	0000ВАн*1	
Reserved	×	#33	21н	FFFF78⊦	ICD44	000000 *1	
Reserved	×	#34	22н	FFFF74 _H	ICR11	0000ВВн*1	
Reserved	×	#35	23н	FFFF70⊦	10040 000000 ::		↓ ↓
16-bit reload timer 1		#36	24н	FFFF6C _H	ICR12	0000BCн*1	Low

(Continued)

Interrupt source	El ² OS	In	terrup	t vector	Interrupt c	ontrol register	Priority*3
interrupt source	readiness	Number		Address	ICR	Address	Priority
UART1 reception completed	0	#37	25н	FFFF68 _H	ICR13	0000BD _H *1	High
UART1 transmission completed	Δ	#38	26н	FFFF64 _H	ICK 13	OOOODDH .	\uparrow
UART0 reception completed	0	#39	27н	FFFF60 _H	ICR14	0000ВЕн*1	
UART0 transmission completed	Δ	#40	28н	FFFF5C _H	ICK 14	0000BEH	
Flash memory	×	#41	29н	FFFF58 _H			
Delay interrupt generation module	×	#42	2Ан	FFFF54 _H	ICR15	0000BFн*1	↓ Low

○ : Available

× : Unavailable

: Available, El²OS stop function is provided.

 Δ : Available when a cause of interrupt sharing a same ICR is not used.

- *1 : Peripheral functions sharing an ICR register have the same interrupt level.
 - If peripheral functions share an ICR register, only one function is available when using extended intelligent I/O service.
 - If peripheral functions share an ICR register, a function using extended intelligent I/O service does not allow interrupt by another function.
- *2 : Only input capture 1 is ready for El²OS. Because PPG is not ready for El²OS, disable PPG interrupt when using El²OS with Input capture 1.
- *3 : Priority when two or more interrupts of a same level occur simultaneously.

■ FLASH MEMORY CONFIGURATION

• Sector configuration of 512 Kbit flash memory

Flash memory	CPU address	Writer address*	
SA0 (4 Kbytes)	FF0000H	70000н	
	FF0FFFH	70FFFн	
	FF1000H	71000н	.
SA1 (4 Kbytes)			녿
	FF1FFFH	71FFFн	Lower Bank
	FF2000H	72000н	Ver
SA2 (4 Kbytes)			<u> </u>
	FF2FFFH	72FFFH	.
	FF3000H	73000н	
SA3 (4 Kbytes)			
	FF3FFFH	73FFFн	
CA4 (46 Khytaa)	FF4000н	74000н	
SA4 (16 Kbytes)			
	FF7FFFH	77FFFн	.
0.45 (40 K/h, 4)	FF8000H	78000н	
SA5 (16 Kbytes)			
	FFBFFFH	7BFFFн	.
0.4.0 (4.16)	FFC000H	7С000н	
SA6 (4 Kbytes)			킬
	FFCFFFH	7СFFFн	
0.47 (4 Kh. 4)	FFD000H	7D000н	Jpper Bank
SA7 (4 Kbytes)			[하
	FFDFFFH	7DFFFH	.
	FFE000H	7E000H	
SA8 (4 Kbytes)			
	FFEFFFH	7EFFFH	.
	FFF000H	7F000н	
SA9 (4 Kbytes)			7 4
	FFFFFH	7FFFFн 	

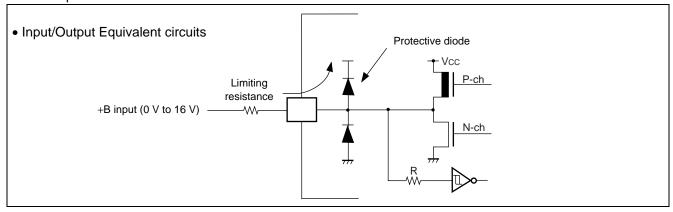
^{*: &}quot;Writer address" is an address equivalent to CPU address, which is used when data is written on flash memory, using parallel writer. When writing/deleting data with general-purpose writer, the writer address is used for writing and deleting.

■ ELECTRIC CHARACTERISTICS

1. Absolute Maximum Rating

Doromotor	Cumbal	Rat	ting	l lni4	Domorteo
Parameter	Symbol	Min	Max	Unit	Remarks
	Vcc	Vss - 0.3	Vss + 6.0	V	
Power supply voltage*1	AVcc	Vss - 0.3	Vss + 6.0	V	Vcc = AVcc*2
	AVR	Vss - 0.3	Vss + 6.0	V	AVcc ≥ AVR*2
Input voltage*1	Vı	Vss - 0.3	Vss + 6.0	V	*3
Output voltage*1	Vo	Vss - 0.3	Vss + 6.0	V	*3
Maximum clamp current	I CLAMP	- 2.0	+ 2.0	mA	*7
Total maximum clamp current	Σ ICLAMP		20	mA	*7
(1.2.1	lo _{L1}		15	mA	Normal output*4
"L" level maximum output current	l _{OL2}		40	mA	High-current output*4
(1.2.1	lolav1		4	mA	Normal output*5
"L" level average output current	lolav2		30	mA	High-current output*5
(1.2)	Σlol1		125	mA	Normal output
"L" level maximum total output current	Σl _{OL2}	_	160	mA	High-current output
(1.2.1	Σ lolav1		40	mA	Normal output*6
"L" level average total output current	Σ lolav2		40	mA	High-current output*6
(112)	І он1		-15	mA	Normal output*4
"H" level maximum output current	І ОН2		-40	mA	High-current output*4
(4) 12 1 1	lohav1	_	-4	mA	Normal output*5
"H" level average output current	lohav2		-30	mA	High-current output*5
(4) 12 1	Σ loh1	_	-125	mA	Normal output
"H" level maximum total output current	ΣI_{OH2}	_	-160	mA	High-current output
(112)	Σ lohav1	_	-40	mA	Normal output*6
"H" level average total output current	Σ lohav2	_	-40	mA	High-current output*6
Power consumption	Po	_	297	mW	
		-40	+105	°C	Other than MB90F897Y/YS
Operating temperature	TA	-40	+125	°C	*8 Other than MB90F897Y/YS
		-40	+150	°C	*8, *9 MB90F897Y/YS
Storage temperature	Tstg	-55	+150	°C	

^{*1:} The parameter is based on $V_{SS} = AV_{SS} = 0.0 \text{ V}.$


26

^{*2:} AVcc and AVR should not exceed Vcc.

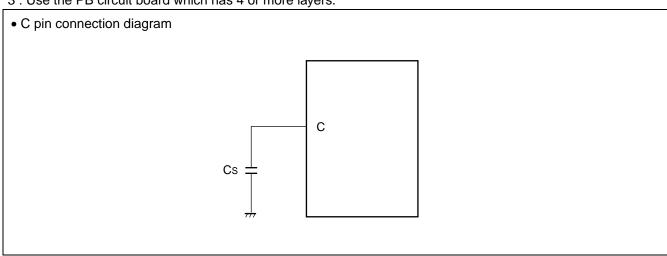
(Continued)

- *3: V_I and V_O should not exceed Vcc + 0.3 V. However, if the maximum current to/from an input is limited by some means with external components, the I_{CLAMP} rating supersedes the V_I rating.
- *4: A peak value of an applicable one pin is specified as a maximum output current.
- *5 : An average current value of an applicable one pin within 100 ms is specified as an average output current. (Average value is found by multiplying operating current by operating rate.)
- *6: An average current value of all pins within 100 ms is specified as an average total output current. (Average value is found by multiplying operating current by operating rate.)
- *7: Applicable to pins: P10 to P17, P20 to P27, P30 to P33, P35, P36, P37, P40 to P44, P50 to P57 Note: P35 and P36 are MB90F897S/YS only.
 - Use within recommended operating conditions.
 - Use at DC voltage (current) .
 - The +B signal should always be applied a limiting resistance placed between the +B signal and the microcontroller.
 - The value of the limiting resistance should be set so that when the +B signal is applied the input current to the microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.
 - Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input potential may pass through the protective diode and increase the potential at the Vcc pin, and this may affect other devices.
 - Note that if a +B signal is input when the microcontroller power supply is off (not fixed at 0 V), the power supply is provided from the pins, so that incomplete operation may result.
 - Note that if the +B input is applied during power-on, the power supply is provided from the pins and the resulting supply voltage may not be sufficient to operate the power-on reset.
 - Care must be taken not to leave the +B input pin open.
 - Note that analog system input/output pins other than the A/D input pins (LCD drive pins, comparator input pins, etc.) cannot accept +B signal input.
 - Sample recommended circuits:

- *8 : Users considering application exceeding T_A = +105°C are advised to contact their FUJITSU MICROELEC-TRONICS representatives beforehand for reliability limitations.
- *9: Use the PB circuit board which has 4 or more layers.

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

2. Recommended Operating Conditions


(Vss = AVss = 0.0 V)

Parameter	Symbol		Value		Unit	Remarks	
Farameter	Syllibol	Min	Тур	Max	Oilit	Nemarks	
		3.5	5.0	5.5	V	Under normal operation	
Power supply voltage	Vcc	3.0	_	5.5	V	Retain status of stop operation	
		4.0	_	5.5	V	Accuracy guarantee voltage of A/D converter	
Smoothing capacitor	Cs	0.1	_	1.0	μF	*1	
		-40	_	+105	°C	Other than MB90F897Y/YS	
Operating temperature	Та	-40	_	+125	°C	*2 Other than MB90F897Y/YS	
		-40	_	+150	°C	*2, *3 MB90F897Y/YS	

^{*1 :} Use a ceramic capacitor, or a capacitor of similar frequency characteristics. On the Vcc pin, use a bypass capacitor that has a larger capacity than that of Cs.

Refer to the following figure for connection of smoothing capacitor Cs.

*3: Use the PB circuit board which has 4 or more layers.

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

^{*2:} Users considering application exceeding T_A = +105°C are advised to contact their FUJITSU MICROELECTRON-ICS representatives beforehand for reliability limitations.

3. DC Characteristics

 \bullet MB90F897/S (Models that support + 125 $^{\circ}\text{C})$

(Vcc = 5.0 V \pm 10%, Vss = AVss = 0.0 V, TA = -40 °C to +125 °C)

Parame-	Sym	Din nome	,	,	Value	,		Damanta
ter	bol	Pin name	Conditions	Min	Тур	Max	Unit	Remarks
	Vihs	CMOS hysteresis input pin	_	0.8 Vcc	_	Vcc + 0.3	V	When selected CMOS hysteresis
"H" level input voltage	VIHA	Automotive input pin	_	0.8 Vcc	_	Vcc + 0.3	V	When selected Automotive
voltage	VIHC	CMOS input pin (P32, P40)	_	0.7 Vcc	_	Vcc + 0.3	V	When selected CMOS
	VIHM	MD input pin	_	Vcc - 0.3		Vcc + 0.3	V	
	VILS	CMOS hysteresis input pin	_	Vss - 0.3	_	0.2 Vcc	V	When selected CMOS hysteresis
voltage	VILA	Automotive input pin	_	Vss - 0.3	_	0.5 Vcc	V	When selected Automotive
	VILC	CMOS input pin (P32, P40)	_	Vss - 0.3	_	0.3 Vcc	V	When selected CMOS
	VILM	MD input pin	_	Vss - 0.3	_	Vss + 0.3	V	
"H" level	Vон1	Pins other than P14 to P17	Vcc = 4.5 V, Іон = -4.0 mA	Vcc - 0.5	_	_	V	
output voltage	V _{OH2}	P14 to P17	Vcc = 4.5 V, Іон = -14.0 mA	Vcc - 0.5	_	_	V	
"L" level	V _{OL1}	Pins other than P14 to P17	Vcc = 4.5 V, lo _L = 4.0 mA	_	_	0.4	V	
output voltage	V _{OL2}	P14 to P17	$V_{CC} = 4.5 \text{ V},$ $I_{OL} = 20.0 \text{ mA}$	_	_	0.4	V	
Input leak current	Iι∟	All input pins	Vcc = 5.5 V, Vss < Vı < Vcc	- 5	_	+5	μΑ	
			Vcc = 5.0 V, Internally operating at 16 MHz, normal operation.	_	25	30	mA	
Power supply current*	lcc	Vcc	Vcc = 5.0 V, Internally operating at 16 MHz, writing on flash memory.	_	45	50	mA	MB90F897/S
				Vcc = 5.0 V, Internally operating at 16 MHz, deleting on flash memory.		45	50	mA

^{*:} Test conditions of power supply current are based on a device using external clock.

(Continued)

 $(Vcc = 5.0 V\pm 10\%, Vss = AVss = 0.0 V, T_A = -40 °C to +125 °C)$

Parameter	Sym-	Pin name	Conditions		Value		Unit	Remarks
Parameter	bol	Fill Haille	Conditions	Min	Тур	Max	Onit	Remarks
	Iccs		Vcc = 5.0 V, Internally operating at 16 MHz, sleeping.	_	8	12	mA	
	Істѕ		Vcc = 5.0 V, Internally operating at 2 MHz, transition from main clock mode, in time-base timer mode.	1	0.2	0.35	mA	
Power supply current*		Vcc = 5.0 V, Internally operating at 16 MHz, transition from PLL clock mode, in time-base timer mode.		3	5	mA		
	Iccl	Vcc	Vcc = 5.0 V, Internally operating at 8 kHz, subclock operation, T _A = +25°C	_	40	100	μА	
	IccLs		Vcc = 5.0 V, Internally operating at 8 kHz, subclock, sleep mode, T _A = +25°C	I	10	50	μА	
	Ісст		Vcc = 5.0 V, Internally operating at 8 kHz, watch mode, T _A = +25°C	ı	8	30	μА	
	Іссн		Stopping, T _A = +25°C		5	25	μΑ	
Input capacity	Cin	Other than AVcc, AVss, AVR, C, Vcc, Vss	_	_	5	15	pF	
Pull-up resistor	Rup	RST	_	25	50	100	kΩ	
Pull-down resistor	RDOWN	MD2	_	25	50	100	kΩ	FLASH product is not provided with pull-down resistor.

^{*:} Test conditions of power supply current are based on a device using external clock.

• MB90F897Y/YS (Models that support + 150 $^{\circ}$ C) (Under development)

 $(\text{Vcc} = 5.0 \text{ V} \pm 10\%, \text{ Vss} = \text{AVss} = 0.0 \text{ V}, \text{T}_{\text{A}} = -40 \text{ }^{\circ}\text{C to} +150 \text{ }^{\circ}\text{C})$

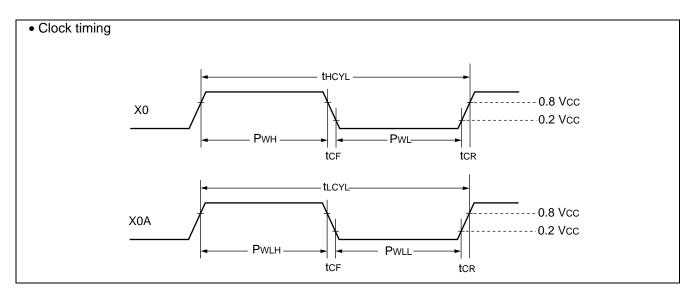
Darameter	Sym	Pin name	Conditions	,	Value	,	Unit	0 °C to +150 °C)	
Parameter	bol	Pin name	Conditions	Min	Тур	Max	Unit	Remarks	
<i>(</i> (1.11)	Vihs	CMOS hysteresis input pin	ı	0.8 Vcc	_	Vcc + 0.3	V	When selected CMOS hysteresis	
"H" level input voltage	VIHA	Automotive input pin		0.8 Vcc	_	Vcc + 0.3	V	When selected Automotive	
voltage	VIHC	CMOS input pin (P32, P40)		0.7 Vcc	_	Vcc + 0.3	٧	When selected CMOS	
	Vінм	MD input pin	_	Vcc - 0.3	_	Vcc + 0.3	V		
"L" level input voltage	VILS	CMOS hysteresis input pin	_	Vss - 0.3	_	0.2 Vcc	V	When selected CMOS hysteresis	
	VILA	Automotive input pin	_	Vss - 0.3	_	0.5 Vcc	V	When selected Automotive	
	VILC	CMOS input pin (P32, P40)	_	Vss - 0.3	_	0.3 Vcc	V	When selected CMOS	
	VILM	MD input pin	_	Vss - 0.3	_	Vss + 0.3	V		
"H" level	V _{OH1}	Pins other than P14 to P17	$V_{CC} = 4.5 \text{ V},$ $I_{OH} = -3.0 \text{ mA}$	Vcc - 0.5	_	_	V		
output volt- age	V _{OH2}	P14 to P17	$V_{CC} = 4.5 \text{ V},$ $I_{OH} = -12.0 \text{ mA}$	Vcc - 0.5	_	_	V		
"L" level	V _{OL1}	Pins other than P14 to P17	$V_{CC} = 4.5 \text{ V},$ $I_{OL} = 3.0 \text{ mA}$	_	_	0.4	V		
output volt- age	V _{OL2}	P14 to P17	Vcc = 4.5 V, loL = 16 mA	_	_	0.4	V		
Input leak current	Iı∟	All input pins	Vcc = 5.5 V, Vss < Vı < Vcc	- 5	_	+5	μΑ		
			Vcc = 5.0 V, Internally operating at 16 MHz, normal operation.	_	25	32	mA		
Power supply current*	Icc Vcc	Icc Vcc	Vcc	$V_{CC} = 5.0 \text{ V},$ Internally operating at 16 MHz, writing on flash memory. $T_A = -40 \text{ °C to } +125 \text{ °C}$	_	45	50	mA	Up to + 125 °C
		$V_{CC} = 5.0 \text{ V},$ Internally operating at 16 MHz, deleting on flash memory. $T_A = -40 ^{\circ}\text{C}$ to +125 $^{\circ}\text{C}$	_	45	50	mA	Up to + 125 °C		

^{*:} Test conditions of power supply current are based on a device using external clock.

(Continued)

 $(Vcc = 5.0 V \pm 10\%, Vss = AVss = 0.0 V, T_A = -40 °C to +150 °C)$

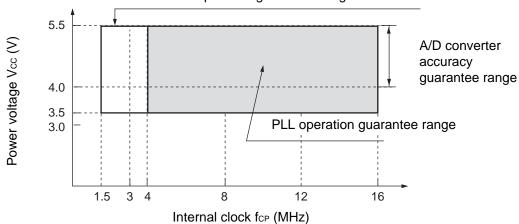
D	Sym-	Din nome	,		Value			= -40 C (0 +150 C)	
Parameter	bol	Pin name	Conditions	Min	Тур	Max	Unit	Remarks	
	Iccs		Vcc = 5.0 V, Internally operating at 16 MHz, sleeping.	_	8	14	mA		
			Vcc = 5.0 V, Internally operating at 2 MHz, transition from main clock mode, in time-base timer mode. T _A = -40 °C to +125 °C	_	0.2	0.35	mA	Up to + 125 °C	
	Істѕ		Vcc = 5.0 V, Internally operating at 2 MHz, transition from main clock mode, in time-base timer mode. T _A = +125 °C to +150 °C	_	0.2	T.B.D	mA		
Power supply current*	Істѕріі	Vcc	Vcc = 5.0 V, Internally operating at 16 MHz, transition from PLL clock mode, in time-base timer mode.	_	3	7	mA		
	Iccl		Vcc = 5.0 V, Internally operating at 8 kHz, subclock operation, T _A = +25°C	_	40	100	μА		
	Iccus		Vcc = 5.0 V, Internally operating at 8 kHz, subclock, sleep mode, T _A = +25°C	_	10	50	μА		
	Ісст		Vcc = 5.0 V, Internally operating at 8 kHz, watch mode, T _A = +25°C	_	8	30	μΑ		
	Іссн		Stopping, T _A = +25°C	_	5	25	μΑ		
Input capacity	Cin	Other than AVcc, AVss, AVR, C, Vcc, Vss	_	_	5	15	pF		
Pull-up resistor	Rup	RST	_	25	50	100	kΩ		
Pull-down resistor	Rdown	MD2	_	25	50	100	kΩ	FLASH product is not provided with pull-down resistor.	

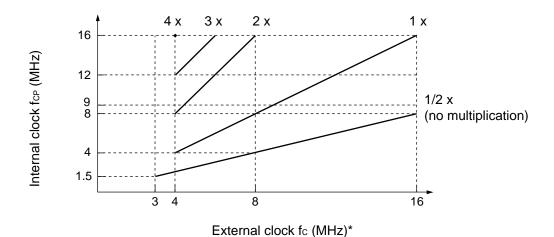

^{*:} Test conditions of power supply current are based on a device using external clock.

4. AC Characteristics

(1) Clock timing

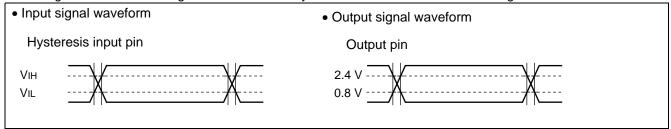
 $(Vcc = 5.0 V \pm 10\%, Vss = AVss = 0.0 V, T_A = -40 °C to +125 °C/+150 °C (only MB90F897Y/YS))$


Parameter	Symbol	Pin name	Value			Unit	Remarks	
Parameter			Min	Тур	Max	Offic	Remarks	
Clock frequency	fc	X0, X1	3	_	8	MHz	When crystal or ceramic resonator is used	
			3		16	MHz	External clock	
			4		16	MHz	PLL multiplied by 1	
			4	_	8	MHz	PLL multiplied by 2	
			4	_	5.33	MHz	PLL multiplied by 3	
			4	_	4	MHz	PLL multiplied by 4	
	f cL	X0A, X1A	_	32.768	_	kHz	MB90F897/Y only	
Clock cycle time	t HCYL	X0, X1	125	_	333	ns		
	t LCYL	X0A, X1A		30.5	_	μs	MB90F897/Y only	
Input clock pulse width	Pwh, PwL	X0	10	_	_	ns	Set duty factor at 30% to 70% as a guideline.	
	Pwlh,Pwll	X0A		15.2	_	μs	MB90F897/Y only	
Input clock rise time and fall time	tcr, tcf	X0	_	_	5	ns	When external clock is used	
Internal operation clock frequency	fср	_	1.5	_	16	MHz	When main clock is used	
	fLCP	_	_	8.192	_	kHz	When sub clock is used, MB90F897/Y only	
Internal operation clock cycle time	t cp		62.5		666	ns	When main clock is used	
	t LCP	_	_	122.1	_	μs	When sub clock is used, MB90F897/Y only	


• PLL operation guarantee range

Relation between internal operation clock frequency and power supply voltage

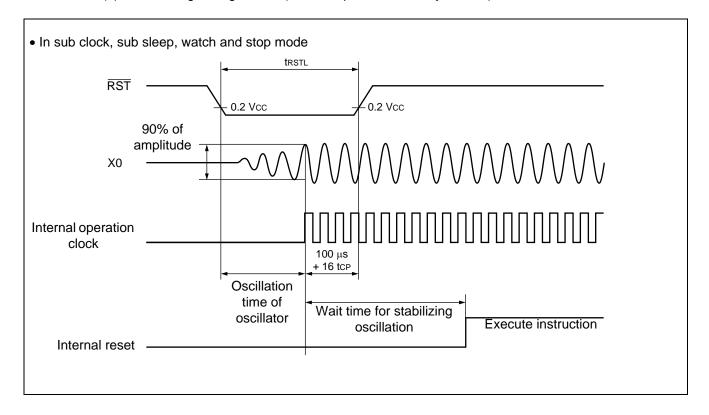
Operation guarantee range of MB90F897/S/Y/YS



Relation among external clock frequency and internal clock frequency

*: fc is 8 MHz at maximum when crystal or ceramic resonator circuit is used.

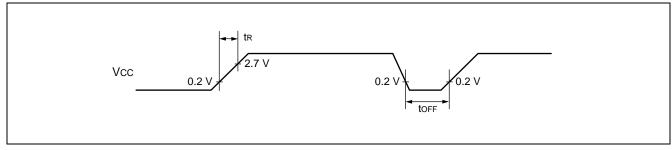
Rating values of alternating current is defined by the measurement reference voltage values shown below:

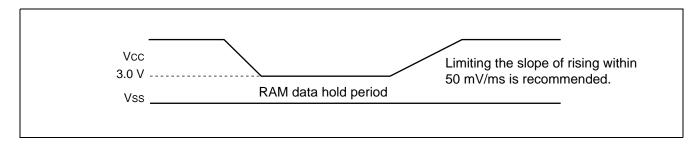


(2) Reset input timing

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, V_{SS} = AV_{SS} = 0.0 \text{ V}, T_{A} = -40 ^{\circ}\text{C to} + 125 ^{\circ}\text{C} / +150 ^{\circ}\text{C} (only MB90F897Y/YS))$

Parameter	Symbol	Pin name	Condi- tions	Value		Unit	Remarks
				Min	Max	Oill	
Reset input time	t rstl	RST	_	16 t _{CP} *3	_	ns	Normal operation
				Oscillation time of oscillator*1 + 100 μs + 16 tcr*3	_	_	In sub clock*2, sub sleep*2, watch*2 and stop mode
				100	_	μs	In timebase timer


- *1 : Oscillation time of oscillator is time that the amplitude reached the 90%. In the crystal oscillator, the oscillation time is between several ms to tens of ms. In ceramic oscillator, the oscillation time is between hundreds of μs to several ms. In the external clock, the oscillation time is 0 ms.
- *2: Except for MB90F897S/YS.
- *3 : Refer to "(1) Clock timing" ratings for top (internal operation clock cycle time).

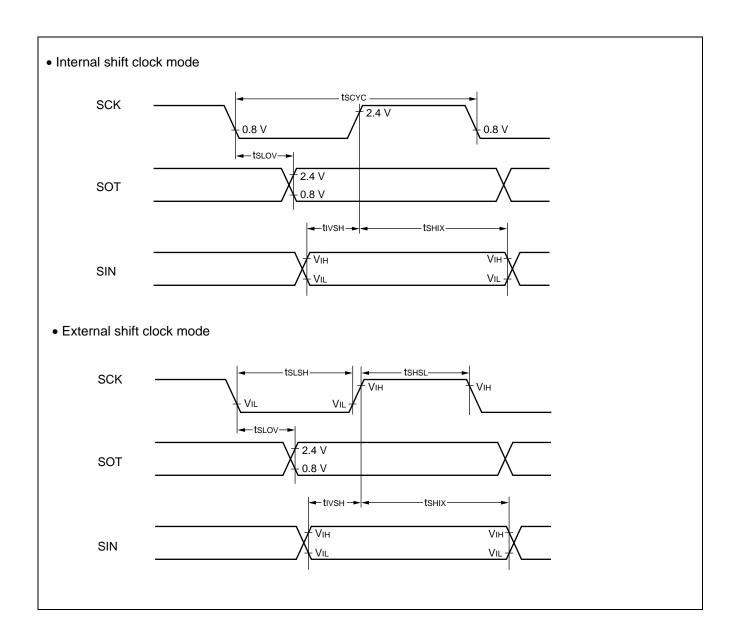

(3) Power-on reset

 $(V_{SS} = AV_{SS} = 0.0 \text{ V}, T_A = -40 ^{\circ}\text{C to} +125 ^{\circ}\text{C}/+150 ^{\circ}\text{C} \text{ (only MB90F897Y/YS))}$

Parameter	Symbol	Pin name	Conditions	Value		Unit	Remarks	
raiametei	Symbol	Fili lialile	Conditions	Min	Max	Onit	iveillai ks	
Power supply rise time	t R	Vcc		0.05	30	ms		
Power supply shutdown time	toff	Vcc	_	1		ms	Repeated operation	

Note: Sudden change of power supply voltage may activate the power-on reset function. When changing power supply voltages during operation, raise the power smoothly by suppressing variation of voltages as shown below. When raising the power, do not use PLL clock. However, if voltage drop is 1V/s or less, use of PLL clock is allowed during operation.

(4) UART0/UART1 timing

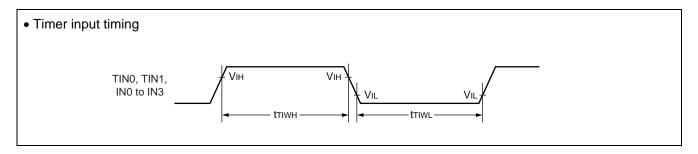

 $(V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}, V_{SS} = 0.0 \text{ V}, T_{A} = -40 ^{\circ}\text{C} \text{ to } +125 ^{\circ}\text{C}/+150 ^{\circ}\text{C} \text{ (only MB90F897Y/YS))}$

Parameter	Symbol	Pin name	Conditions	Value		Hnit	Remarks
raiametei	Syllibol	r III IIailie	Conditions	Min	Max	Oilit	iveillai ks
Serial clock cycle time	t scyc	SCK0/SCK1		8 tcp*	_	ns	
$SCK \downarrow \to SOT$ delay time	tsLOV	SCK0/SCK1, SOT0/SOT1	Internal shift clock	-80	+80	ns	
Valid SIN → SCK \uparrow	t ıvsh	SCK0/SCK1, SIN0/SIN1	mode output pin is : $C_L = 80 \text{ pF+1TTL}$	100		ns	
SCK $\uparrow \rightarrow$ valid SIN hold time	t sнıx	SCK0/SCK1, SIN0/SIN1		60	_	ns	
Serial clock "H" pulse width	t shsl	SCK0/SCK1		4 tcp*		ns	
Serial clock "L" pulse width	t slsh	SCK0/SCK1		4 tcp*	_	ns	
$SCK \downarrow \to SOT$ delay time	tsLov	SCK0/SCK1, SOT0/SOT1	External shift clock mode output pin is : C _L = 80 pF+1TTL	_	150	ns	
Valid SIN → SCK ↑	t ıvsh	SCK0/SCK1, SIN0/SIN1		60	_	ns	
SCK ↑ →valid SIN hold time	t shix	SCK0/SCK1, SIN0/SIN1		60	_	ns	

^{* :} Refer to "(1) Clock timing" ratings for tcp (internal operation clock cycle time).

Notes: • AC rating in CLK synchronous mode.

• C_L is a load capacitance value on pins for testing.

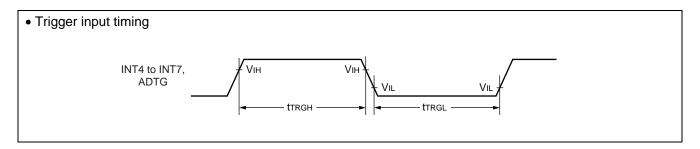


(5) Timer input timing

 $(Vcc = 4.5 \text{ V to } 5.5 \text{ V}, Vss = 0.0 \text{ V}, T_A = -40 ^{\circ}\text{C} \text{ to } +125 ^{\circ}\text{C}/+150 ^{\circ}\text{C} \text{ (only MB90F897Y/YS))}$

Parameter	Symbol Pin name		Conditions	Val	lue	Unit	Remarks
raiametei	Symbol	Filitianie	Conditions	Min	Max	Oilit	IVEIIIai KS
Input pulse width	t тıwн	TIN0, TIN1		4 tcp*	_	nc	
Imput puise width	t TIWL	IN0 to IN3		4 I CP		ns	

^{* :} Refer to "(1) Clock timing" ratings for tcp (internal operation clock cycle time).



(6) Trigger input timing

 $(Vcc = 4.5 \text{ V to } 5.5 \text{ V}, Vss = 0.0 \text{ V}, T_A = -40 ^{\circ}\text{C} \text{ to } +125 ^{\circ}\text{C}/+150 ^{\circ}\text{C} \text{ (only MB90F897Y/YS))}$

Parameter Symbol Pin name		Pin name	Conditions		lue	Unit	Remarks
Farameter Symbol	i iii iiaiiie	Conditions	Min	Max	Oilit		
Input pulse width	ttrgh ttrgl	INT4 to INT7, ADTG	_	3 tcp*	_	ns	

^{*:} Refer to "(1) Clock timing" ratings for tcp (internal operation clock cycle time).

5. A/D converter

(Vcc = AVcc = $5.0 \text{ V} \pm 10 \%$, $3.0 \text{ V} \le \text{AVR} - \text{AVss}$, Vss = AVss = 0.0 V, T_A = $-40 \,^{\circ}\text{C}$ to $+125 \,^{\circ}\text{C}/+150 \,^{\circ}\text{C}$ (only MB90F897Y/YS))

Danamastan	Comple of	Pin	Pin Value				Barrarka
Parameter	Symbol	name	Min	Тур	Max	Unit	Remarks
Resolution	_	_	_	_	10	bit	
Total error			_	_	± 3.0	LSB	
Nonlinear error		_	_	_	± 2.5	LSB	
Differential linear error	_	_	_	_	± 1.9	LSB	
Zero transition voltage	Vот	AN0 to AN7	AVss – 1.5 LSB	AVss + 0.5 LSB	AVss + 2.5 LSB	V	1 LSB = (AVR -
Full-scale transition voltage	V _{FST}	AN0 to AN7	AVR – 3.5 LSB	AVR – 1.5 LSB	AVR + 0.5 LSB	V	AVss) /1024
Compare time	_		66 tcp*1	_	_	ns	With 16 MHz machine clock 5.5 V ≥ AVcc ≥ 4.5 V
Compare time			88 tcp*1	_	_	ns	With 16 MHz machine clock 4.5 V > AVcc ≥ 4.0 V
	_		32 tcp*1	_	_	ns	With 16 MHz machine clock 5.5 V ≥ AVcc ≥ 4.5 V
Sampling time			128 tcp *1		_	ns	With 16 MHz machine clock 4.5 V > AVcc ≥ 4.0 V
Analog port input current	lain	AN0 to AN7			10	μΑ	
Analog input voltage	Vain	AN0 to AN7	AVss	_	AVR	V	
Reference voltage	_	AVR	AVss + 2.7	_	AVcc	V	
Davier avente avent	lΑ	AVcc	_	3.5	7.5	mA	
Power supply current	Іан	AVcc			5	μΑ	*2
Reference voltage	IR	AVR	_	165	250	μΑ	
supplying current	IRH	AVR	_	_	5	μΑ	*2
Variation among channels	_	AN0 to AN7	_		4	LSB	

^{*1 :} Refer to "(1) Clock timing" ratings for tcp (internal operation clock cycle time).

^{*2 :} If A/D converter is not operating, a current when CPU is stopped is applicable (Vcc=AVcc=AVR=5.0 V).

6. Definition of A/D Converter Terms

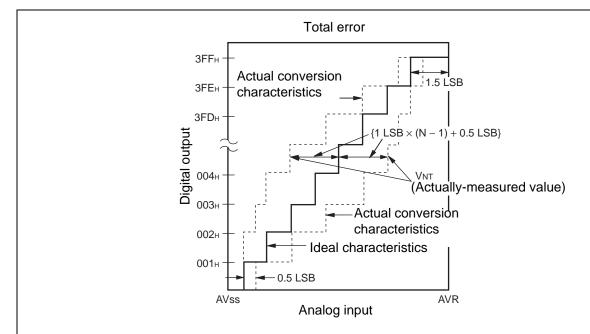
Resolution : Analog variation that is recognized by an A/D converter.

Linear error : Deviation between a line across zero-transition line ("00 0000 0000" ←→"00 0000 0001")

and full-scale transition line ("11 1111 1110" ←→ "11 1111 1111") and actual conversion

characteristics.

Differential linear


error

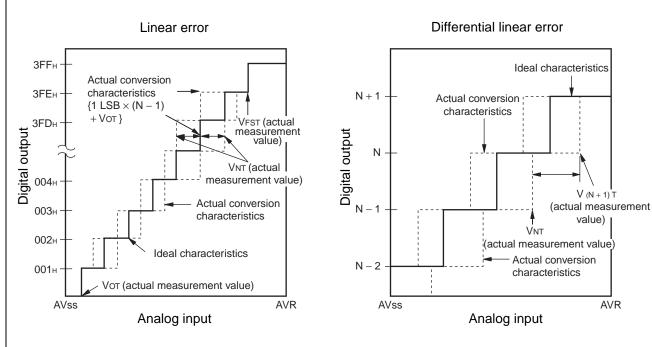
: Deviation of input voltage, which is required for changing output code by 1 LSB, from an

ideal value.

Total error : Difference between an actual value and an ideal value. A total error includes zero transition

error, full-scale transition error, and linear error.

Total error of digital output "N" =
$$\frac{V_{NT} - \{1 \text{ LSB} \times (N-1) + 0.5 \text{ LSB}\}}{1 \text{ LSB}}$$
 [LSB]


$$1 LSB = (Ideal value) \frac{AVR - AVss}{1024} [V]$$

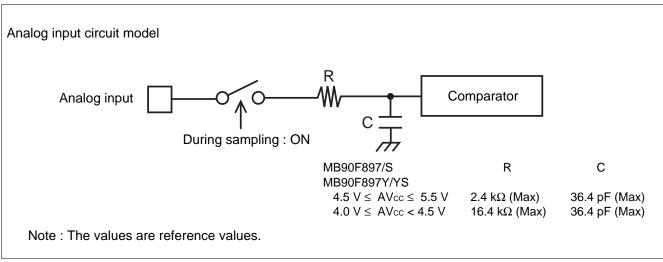
Vor (Ideal value) = AVss + 0.5 LSB [V]

 V_{FST} (Ideal value) = AVR - 1.5 LSB [V]

V_{NT}: A voltage at which digital output transits from (N-1) to N.

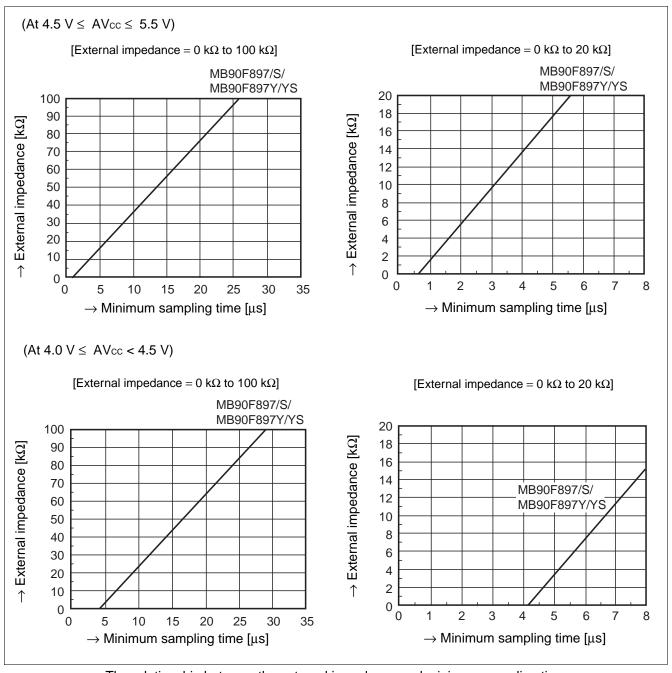
(Continued)

Differential linear error of digital output N =
$$\frac{V(N+1)T-VNT}{1LSB}$$
 -1LSB [LSB]


$$1 LSB = \frac{V_{FST} - V_{OT}}{1022} [V]$$

 V_{OT} : Voltage at which digital output transits from "000H" to "001H." V_{FST} : Voltage at which digital output transits from "3FEH" to "3FFH."

7. Notes on A/D Converter Section


<About the external impedance of the analog input and its sampling time>

• A/D converter with sample and hold circuit. If the external impedance is too high to keep sufficient sampling time, the analog voltage charged to the internal sample and hold capacitor is insufficient, adversely affecting A/D conversion precision.

(Continued)

• To satisfy the A/D conversion precision standard, consider the relationship between the external impedance and minimum sampling time and either adjust the resistor value and operating frequency or decrease the external impedance so that the sampling time is longer than the minimum value.

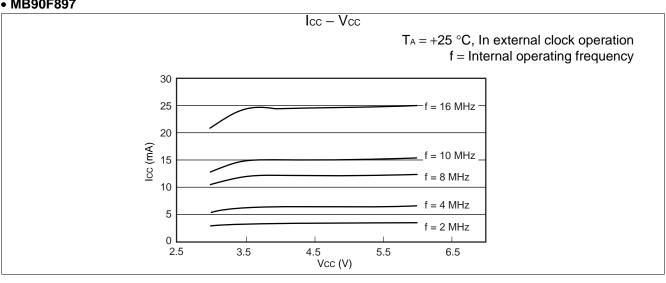
The relationship between the external impedance and minimum sampling time

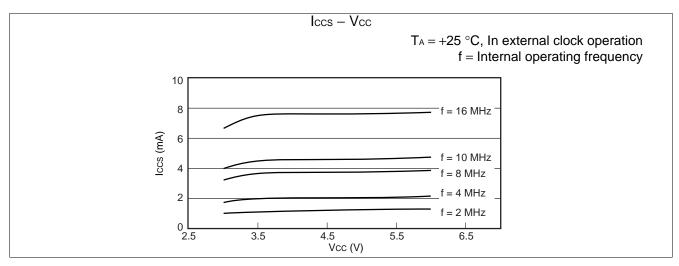
• If the sampling time cannot be sufficient, connect a capacitor of about 0.1 μF to the analog input pin.

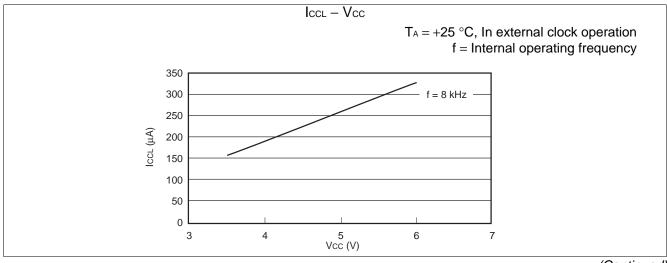
<About errors>

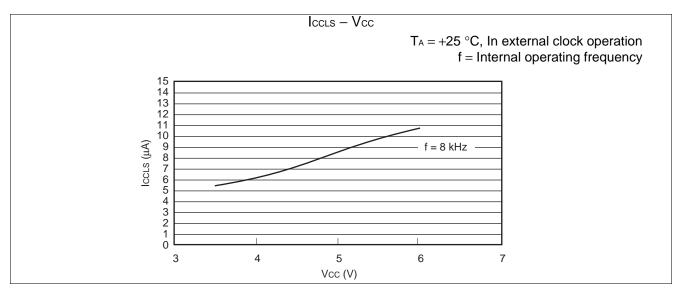
• As AVR – AVss become smaller, values of relative errors grow larger.

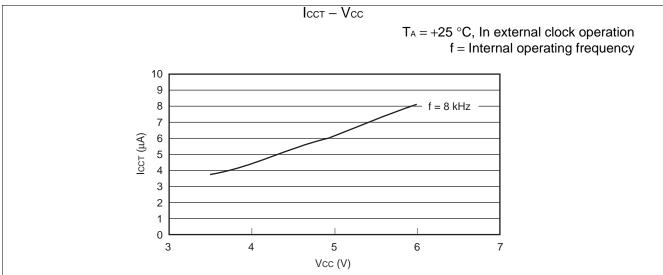
8. Flash Memory Program/Erase Characteristics*1

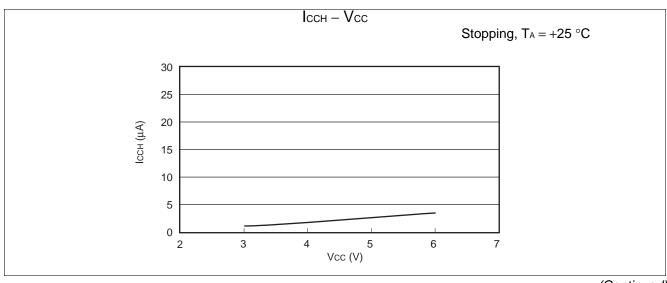

Parameter	Conditions		Value		Unit	Remarks
Parameter	Conditions	Min	Тур	Max	Offic	Remarks
Sector erase time (4 KB sector)			0.2	0.5	s	Excludes 00 _H programming prior to erasure
Sector erase time (16 KB sector)	T _A = + 25 °C,	_	0.5	7.5	s	Excludes 00 _H programming prior to erasure
Chip erase time	Vcc = 5.0 V	_	2.6	_	S	Excludes 00 _H programming prior to erasure
Word (16 bit width) programming time		_	16	3,600	μs	Except for the over head time of the system
Program/Erase cycle		10,000	_	_	cycle	
Flash Data Retention Time	Average T _A = + 85 °C	20	_	_	Years	*2

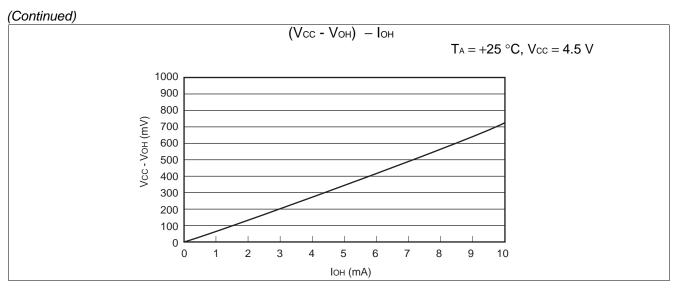

^{*1 :} For MB90F897Y/YS, it is prohibited to write or erase data in the range of $T_A = +125$ °C to +150 °C.

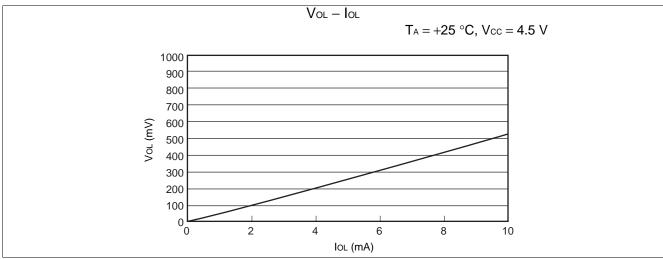

^{*2 :} This value comes from the technology qualification (using Arrhenius equation to translate high temperature measurements into normalized value at + 85 °C) .

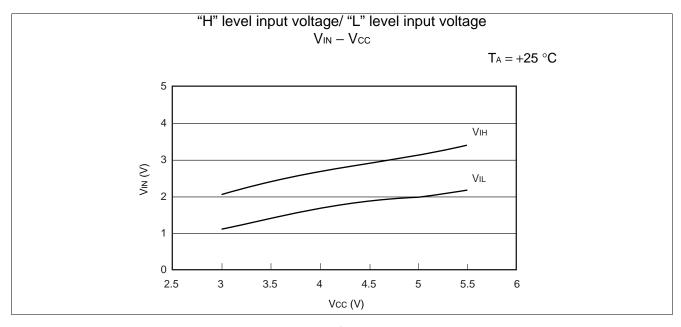

■ EXAMPLE CHARACTERISTICS

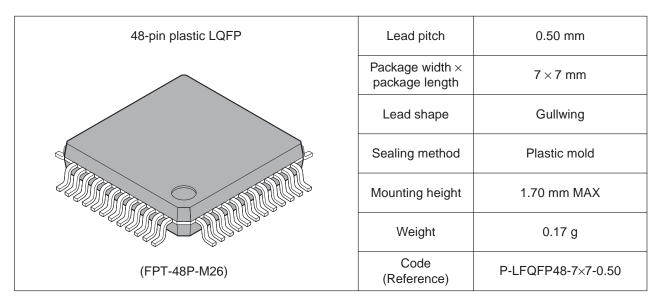

• MB90F897

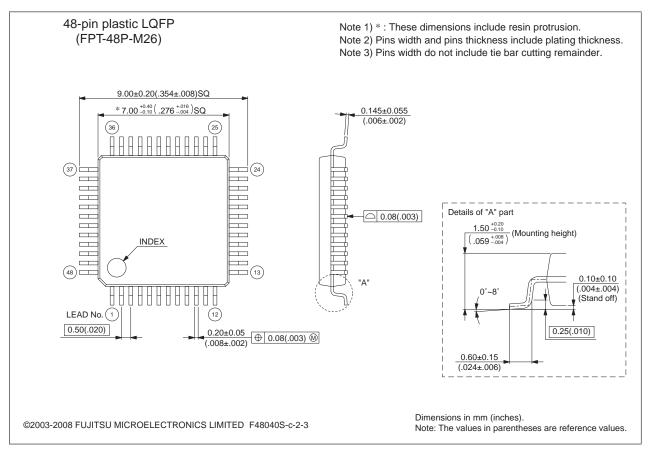












■ ORDERING INFORMATION

Part number	Package	Remarks
MB90F897PMT MB90F897SPMT MB90F897YPMT MB90F897YSPMT	48-pin plastic LQFP (FPT-48P-M26)	

■ PACKAGE DIMENTION

Please confirm the latest Package dimension by following URL. http://edevice.fujitsu.com/package/en-search/

■ MAIN CHANGES IN THIS EDITION

Page	Section	Change Results
_	_	Added the following part numbers under development. MB90F897Y, MB90F897YS
1	■ FEATURES	Added as follows. • Models that support + 150 °C (MB90F897Y/YS)
8	■ PIN DESCRIPTION	Corrected the function of pin SCK0 on pin number 43. UART1 \rightarrow UART0
11	■ HANDLING DEVICES	Corrected the description for "• Handling Unused Pins". unused input pins → unused I/O pins
12		"• Support for + 125 °C" → "• Support for + 125 °C / + 150 °C"
13	■ BLOCK DIAGRAM	Corrected the arrow for "pin X0 and X1" in the clock control circuit. "input → "→ "input/output←→" Corrected the arrow for "pin TIN0 and pin TIN1" in 16-bit reload timer (2ch).
		"output →" →" input←"
23	■ INTERRUPT SOURCES, INTERRUPT VECTORS, AND INTERRUPT CONTROL REGISTERS	Corrected footnotes in the address column for ICR05 and ICR07 of the interrupt control register. $0000B5{\rm H}^{*2} \rightarrow 0000B5{\rm H}^{*1} \\ 10000B7{\rm H}^{*1} \rightarrow 0000B7{\rm H}^{*2}$
24		Corrected the description for footnote *2. 16-bit reload timer → Input capture 1
_	■ PERIPHERAL RESOURCES	Deleted the section Refer to the hardware manual, for details of peripheral resources.
25	■ FLASH MEMORY CONFIGURATION	Changed the item name from "PERIPHERAL RESOURCES" to "FLASH MEMORY CONFIGURATION".
26	■ ELECTRIC CHARACTERISTICS 1. Absolute Maximum Rating	Item: Added the rating value for MB90F897Y/YS to the operating temperature. Min: – 40 °C, Max: + 150 °C
27		Added footnote*9.
28	2. Recommended Operating Conditions	Item: Added the rating value for MB90F897Y/YS to the operating temperature. Min: – 40 °C,Max: + 150 °C
		Added footnote *3.
31, 32	3. DC Characteristics	Added DC characteristics for "MB90F897Y/YS".
	4. AC Characteristics	Changed the condition description in the upper right of the table.
33 to 40	5. A/D converter	T _A = -40 °C to +125 °C \rightarrow T _A = -40 °C to +125 °C/+150 °C (Only MB90F897Y/YS)
49	■ ORDERING INFORMATION	Added the following part numbers. MB90F897YPMT, MB90F897YSPMT

The vertical lines marked in the left side of the page show the changes.

FUJITSU MICROELECTRONICS LIMITED

Shinjuku Dai-Ichi Seimei Bldg., 7-1, Nishishinjuku 2-chome, Shinjuku-ku, Tokyo 163-0722, Japan

Tel: +81-3-5322-3329 http://jp.fujitsu.com/fml/en/

For further information please contact:

North and South America

FUJITSU MICROELECTRONICS AMERICA, INC. 1250 E. Arques Avenue, M/S 333
Sunnyvale, CA 94085-5401, U.S.A.
Tel: +1-408-737-5600 Fax: +1-408-737-5999
http://www.fma.fujitsu.com/

Europe

FUJITSU MICROELECTRONICS EUROPE GmbH Pittlerstrasse 47, 63225 Langen, Germany Tel: +49-6103-690-0 Fax: +49-6103-690-122 http://emea.fujitsu.com/microelectronics/

Korea

FUJITSU MICROELECTRONICS KOREA LTD. 206 Kosmo Tower Building, 1002 Daechi-Dong, Gangnam-Gu, Seoul 135-280, Republic of Korea Tel: +82-2-3484-7100 Fax: +82-2-3484-7111 http://kr.fujitsu.com/fmk/

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE. LTD. 151 Lorong Chuan, #05-08 New Tech Park 556741 Singapore Tel: +65-6281-0770 Fax: +65-6281-0220 http://www.fmal.fujitsu.com/

FUJITSU MICROELECTRONICS SHANGHAI CO., LTD. Rm. 3102, Bund Center, No.222 Yan An Road (E), Shanghai 200002, China Tel: +86-21-6146-3688 Fax: +86-21-6335-1605

http://cn.fujitsu.com/fmc/

FUJITSU MICROELECTRONICS PACIFIC ASIA LTD. 10/F., World Commerce Centre, 11 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: +852-2377-0226 Fax: +852-2376-3269

http://cn.fujitsu.com/fmc/en/

Specifications are subject to change without notice. For further information please contact each office.

All Rights Reserved.

The contents of this document are subject to change without notice.

Customers are advised to consult with sales representatives before ordering.

The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of FUJITSU MICROELECTRONICS device; FUJITSU MICROELECTRONICS does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information.

FUJITSU MICROELECTRONICS assumes no liability for any damages whatsoever arising out of the use of the information.

Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of FUJITSU MICROELECTRONICS or any third party or does FUJITSU MICROELECTRONICS warrant non-infringement of any third-party's intellectual property right or other right by using such information. FUJITSU MICROELECTRONICS assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that FUJITSU MICROELECTRONICS will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

Exportation/release of any products described in this document may require necessary procedures in accordance with the regulations of the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control laws.

The company names and brand names herein are the trademarks or registered trademarks of their respective owners.

Edited: Sales Promotion Department